免费 无码进口视频|欧美一级成人观看|亚洲欧美黄色的网站|高清无码日韩偷拍|亚太三区无码免费|在找免费看A片色片一区|激情小说亚洲精品|91人妻少妇一级性av|久久国产综合精品日韓|一级美女操逼大片

教案

“方程的根與函數(shù)的零點”教學教案設計

時間:2022-10-07 09:15:27 教案 我要投稿
  • 相關推薦

“方程的根與函數(shù)的零點”教學教案設計

  一、教學內(nèi)容解析

“方程的根與函數(shù)的零點”教學教案設計

  本節(jié)課的主要內(nèi)容有函數(shù)零點的的概念、函數(shù)零點存在性判定定理。

  函數(shù)f(x)的零點,是中學數(shù)學的一個重要概念,從函數(shù)值與自變量對應的角度看,就是使函數(shù)值為0的實數(shù)x;從方程的角度看,即為相應方程f(x)=0的實數(shù)根,從函數(shù)的圖形表示看,函數(shù)的零點就是函數(shù)f(x)與x軸交點的橫坐標.函數(shù)是中學數(shù)學的核心概念,核心的根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系性,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機的聯(lián)系在一起。

  函數(shù)零點的存在性判定定理,其目的就是通過找函數(shù)的零點來研究方程的根,進一步突出函數(shù)思想的應用,也為二分法求方程的近似解作好知識上和思想上的準備。定理不需證明,關鍵在于讓學生通過感知體驗并加以確認,由些需要結(jié)合具體的實例,加強對定理進行全面的認識,比如定理應用的局限性,即定理的前提是函數(shù)的圖象必須是連續(xù)的,定理只能判定函數(shù)的“變號”零點;定理結(jié)論中零點存在但不一定唯一,需要結(jié)合函數(shù)的圖象和性質(zhì)作進一步的判斷。

  對函數(shù)與方程的關系有一個逐步認識的過程,教材遵循了由淺入深、循序漸進的原則.從學生認為較簡單的一元二次方程與相應的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應的函數(shù)的情形。

  函數(shù)與方程相比較,一個“動”,一個“靜”;一個“整體”,一個“局部”。用函數(shù)的觀點研究方程,本質(zhì)上就是將局部的問題放在整體中研究,將靜態(tài)的結(jié)果放在動態(tài)的過程中研究,這為今后進一步學習函數(shù)與不等式等其它知識的聯(lián)系奠定了堅實的基礎。

  本節(jié)是函數(shù)應用的第一課,因此教學時應當站在函數(shù)應用的高度,從函數(shù)與其他知識的聯(lián)系的角度來引入較為適宜。

  二、教學目標解析

  1.結(jié)合具體的問題,并從特殊推廣到一般,使學生領會函數(shù)與方程之間的內(nèi)在聯(lián)系,從而了解函數(shù)的零點與方程根的聯(lián)系。

  2.結(jié)合函數(shù)圖象,通過觀察分析特殊函數(shù)的零點存在的特點,通過問題,理解連續(xù)函數(shù)在某個區(qū)間上存在零點的判定方法,并能由此方法判定函數(shù)在某個區(qū)間上存在零點。了解定理應用的前提條件,應用的局限性,及定理的準確結(jié)論。

  3.通過具體實例,學生能結(jié)合函數(shù)的圖象和性質(zhì)進一步判斷函數(shù)零點的個數(shù)。

  4.在學習過程中,體驗函數(shù)與方程思想及數(shù)形結(jié)合思想。

  三、教學問題診斷分析

  1.通過前面的學習,學生已經(jīng)了解一些基本初等函數(shù)的模型,掌握了函數(shù)圖象的一般畫法,及一定的看圖識圖能力,這為本節(jié)課利用函數(shù)圖象,判斷方程根的存在性提供了一定的知識基礎。對于函數(shù)零點的概念本質(zhì)的理解,學生缺乏的是函數(shù)的觀點,或是函數(shù)應用的意識,造成對函數(shù)與方程之間的聯(lián)系缺乏了解。由此作為函數(shù)應用的第一課時,有必要點明函數(shù)的核心地位,即說明函數(shù)與其他知識的聯(lián)系及其在生活中的應用,初步樹立起函數(shù)應用的意識。并從此出發(fā),通過問題的設置,引導學生思考,再通過實例的確認與體驗,從直觀到抽象,從特殊到一般的學習方式,捅破學生認識上的這層“窗戶紙”。

  2.對于零點存在的判定定理,教材不要求給予其證明,這需要教師提供一定量的具體案例讓學生操作感知,同時鼓勵學生舉例來驗證,最終能自主地獲得并確認該定理的結(jié)論。對于定理的條件和結(jié)論,學生往往考慮不夠深入,需要教師通過具體的問題,引導學生從正面、反面、側(cè)面等不同的角度重新進行審視。

  3.函數(shù)的零點,體現(xiàn)了函數(shù)與方程之間的密切聯(lián)系,教學中應遵循高中數(shù)學以函數(shù)為主線的這一原則進行聯(lián)結(jié),側(cè)重在從函數(shù)的角度看方程,同時為二分法求方程的近似解作知識和思想上的準備。

  四、教學過程設計

  (一)創(chuàng)設情景,揭示課題

  函數(shù)是中學數(shù)學的核心內(nèi)容,它不僅在生活中有著大量的應用,與其他數(shù)學知識有著千絲萬縷的聯(lián)系,若能抓住這一聯(lián)系,你就擁有了一把解決問題的金鑰匙。

  案例1:周長為定值的矩形

  不妨取l=12

  問題1:求其面積的值:

  顯然面積是一個關于x的一個二次多項式

  ,用幾何畫板演示矩形的變化:

  問題2:求矩形面積的最大值?

  當x取不同值時,代數(shù)式的值也相應隨之變化,你能從函數(shù)的角度審視其中的關系嗎?

  問題3:能否使得矩形的面積為8?你是如何分析的?

  (1)實驗演示的角度進行估計,拖動時難以恰好出現(xiàn)面積為8的情況;

  (2)解方程:x(6-x)=8

  (3)方程x(6-x)=8能否從函數(shù)的角度來進行描述?

  問題4:

  一般地,對于一般的二次三項式,二次方程與二次函數(shù),它們之間有何聯(lián)系?

  結(jié)論:

  代數(shù)式的值就是相應的函數(shù)值;

  方程的根就是使相應函數(shù)值為0的x的值。

  更一般地

  方程f(x)=0的根,就是使函數(shù)值y=f(x)的函數(shù)值為0的x值,從函數(shù)的角度我們稱之為零點。

  設計意圖:本節(jié)課是函數(shù)應用的第一課,有必要讓學生對函數(shù)的應用有所了解。從具體的問題出發(fā),揭示函數(shù)與代數(shù)式、方程之間的內(nèi)在聯(lián)系,并從學生所熟悉的具體的二次函數(shù),推廣到一般的二次函數(shù),再進一步推廣到一般的函數(shù)。

  (二) 互動交流 研討新知

  1.函數(shù)零點的概念:

  對于函數(shù)

  ,把使

  成立的實數(shù)

  叫做函數(shù)

  的零點.

  2.對零點概念的理解

  案例2:觀察圖象

  問題1:此圖象是否能表示函數(shù)?

  問題2:你能從中分析函數(shù)有哪些零點嗎?

  問題3:從函數(shù)圖象的角度,你能對函數(shù)的零點換一種說法嗎?

  結(jié)論:函數(shù)

  的零點就是方程

  實數(shù)根,亦即函數(shù)

  的圖象與

  軸交點的橫坐標.即:

  方程

  有實數(shù)根

  函數(shù)

  的圖象與

  軸有交點

  函數(shù)

  有零點.

  設計意圖:進一步掌握函數(shù)的核心概念,同時通過圖象進行一步完善對函數(shù)零點的全面理解,為下面借助圖象探究零點存在性定理作好一定的鋪墊。

  2.零點存在定理的探究

  案例3:下表是三次函數(shù)

  的部分對應值表:

  問題1:你能從表中找出函數(shù)的零點嗎?

  問題2:結(jié)合圖象與表格,你能發(fā)現(xiàn)此函數(shù)零點的附近函數(shù)值有何特點?

  生:兩邊的函數(shù)值異號!

  問題3:如果一個函數(shù)f(x)滿足f(a)f(b)<0,在區(qū)間(a,b)上是否一定存在著函數(shù)的零點?

  注意:函數(shù)在區(qū)間上必須是連續(xù)的(圖象能一筆畫),從而引出零點存在性定理.

  問題4: 有位同學畫了一個圖,認為定理不一定成立,你的看法呢?

  問題5:你能改變定理的條件或結(jié)論,得到一些新的命題嗎?

  如1:加強定理的結(jié)論:若在區(qū)間[a,b]上連續(xù)函數(shù)f(x)滿足f(a)f(b)<0,是否意味著函數(shù)f(x)在[a,b]上恰有一個零點?

  如2.將定理反過來:若連續(xù)函數(shù)f(x)在[a,b]上有一個零點,是否一定有f(a)f(b)<0?

  如3:一般化:一個函數(shù)的零點是否都可由上述的定理進行判斷?(反例:同號零點,如案例2中的零點-2)

  設計意圖:通過表格,是為了進一步鞏固對函數(shù)這一概念的全面認識,并為觀察零點存在性定理中函數(shù)值的異號埋下伏筆。通過教師的設問讓學生進一步全面深入地領悟定理的內(nèi)容,而鼓勵學生提問,是培養(yǎng)學生學習主動性和創(chuàng)造能力必要的過程。

  (三)鞏固深化,發(fā)展思維

  例1、求函數(shù)f(x)=㏑x+2x -6的零點個數(shù)。

  設計問題:

  (1)你可以想到什么方法來判斷函數(shù)零點?

  (2)你是如何來確定零點所在的區(qū)間的?請各自選擇。

  (3)零點是唯一的嗎?為什么?

  設計意圖:對所學內(nèi)容鞏固,可以借助<幾何畫板>畫出函數(shù)f(x)的圖象觀察,也可借助列出函數(shù)值表觀察。

  本題可以使學生意識對零點的區(qū)間是不唯一的,為下一節(jié)二分法求方程的近似解奠定基礎。

  讓學生進一步領悟,零點的唯一性需要借助函數(shù)的單調(diào)性。

  (四)歸納整理,整體認識

  請回顧本節(jié)課所學知識內(nèi)容有哪些?

  所涉及到的主要數(shù)學思想又有哪些?

  你還獲得了什么?

  (五)作業(yè)(略)

【“方程的根與函數(shù)的零點”教學教案設計】相關文章:

方程的根與函數(shù)的零點 教學教案10-07

函數(shù)與方程教學方案10-07

《函數(shù)與方程》教學方案設計10-08

關于函數(shù)的圖像教學教案設計10-07

圓的標準方程教學教案設計10-07

函數(shù)教學教案設計(通用9篇)10-26

小學數(shù)學解方程教學教案設計(精選11篇)07-05

《函數(shù)的奇偶性》教案設計10-07

橢圓及其標準方程教案設計10-07

函數(shù)教學教案10-08