- 相關推薦
初二數(shù)學上冊第八章圓和圓的位置關系教案
教學目標:

經(jīng)歷探索兩個圓之間位置關系的過程;了解圓與圓之間的幾種位置關系;了解兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系
教學重點和難點
重點:圓與圓之間的幾種位置關系
難點:兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系
教學過程設計
一、從學生原有的認知結(jié)構提出問題
1)復習點與圓的位置關系;2)復習直線與圓的位置關系。
二、師生共同研究形成概念
1.書本引例
☆ 想一想 P 125 平移兩個圓
利用平移實驗直觀地探索圓和圓的位置關系。
2.圓與圓的位置關系
每一種位置關系都可以先讓學生想想應該用什么名稱表達。在講解兩圓外切、內(nèi)切與兩圓圓心距d、半徑R和r的數(shù)量關系的聯(lián)系時,可先讓學生探索,老師不要生硬地把答案說出來
☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關系是 相離 ;
若兩圓有一個交點,則這兩個圓的位置關系是 相切 ;
若兩圓有兩個交點,則這兩個圓的位置關系是 相交 ;
☆ 想一想 書本P 126 想一想
通過實際例子讓學生理解圓與圓的位置關系。
3.圓與圓相切的性質(zhì)
☆ 想一想 書本P 127 想一想
旨在引導學生思考兩圓相切的性質(zhì):如果兩圓相切,那么兩圓的連心線經(jīng)過切點,這一性質(zhì)是下面議一議的基礎。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。
如果兩圓相切,那么兩圓的連心線經(jīng)過切點
4.講解例題
例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數(shù);2)⊙ 的半徑 和⊙ 的半徑 。
5.講解例題
例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。
三、隨堂練習
1.書本 P 128 隨堂練習
2.《練習冊》 P 59
四、小結(jié)
圓與圓的位置關系;圓心距與兩圓半徑和兩圓的關系。
五、作業(yè)
書本 P 130 習題3.9 1
【初二數(shù)學上冊第八章圓和圓的位置關系教案】相關文章:
圓和圓的位置關系教案03-21
圓和圓的位置關系 教案12-28
《直線和圓的位置關系》教學方案10-08
直線和圓的位置關系公開課教案10-05
兩圓的位置關系數(shù)學教案10-07
圓與圓位置關系中常見輔助線的作法10-26
數(shù)學圓的認識教案11-16
小學數(shù)學圓的面積的教案04-18
《圓的面積》數(shù)學教案10-07