- 相關推薦
人教版高中數學《三角函數》教案
教材:已知三角函數值求角(反正弦,反余弦函數)

目的:要求學生初步(了解)理解反正弦、反余弦函數的意義,會由已知角的正弦值、余弦值求出 范圍內的角,并能用反正弦,反余弦的符號表示角或角的集合。
過程:
一、簡單理解反正弦,反余弦函數的意義。
由
1在R上無反函數。
2在 上, x與y是一一對應的,且區(qū)間 比較簡單
在 上, 的反函數稱作反正弦函數,
記作 ,(奇函數)。
同理,由
在 上, 的反函數稱作反余弦函數,
記作
二、已知三角函數求角
首先應弄清:已知角求三角函數值是單值的。
已知三角函數值求角是多值的。
例一、1、已知 ,求x
解: 在 上正弦函數是單調遞增的,且符合條件的角只有一個
(即 )
2、已知
解: , 是第一或第二象限角。
即( )。
3、已知
解: x是第三或第四象限角。
(即 或 )
這里用到 是奇函數。
例二、1、已知 ,求
解:在 上余弦函數 是單調遞減的,
且符合條件的角只有一個
2、已知 ,且 ,求x的值。
解: , x是第二或第三象限角。
3、已知 ,求x的值。
解:由上題: 。
介紹:∵
上題
例三、(見課本P74-P75)略。
三、小結:求角的多值性
法則:1、先決定角的象限。
2、如果函數值是正值,則先求出對應的銳角x;
如果函數值是負值,則先求出與其絕對值對應的銳角x,
3、由誘導公式,求出符合條件的其它象限的角。
四、作業(yè):
P76-77 練習 3
習題4.11 1,2,3,4中有關部分。
【高中數學《三角函數》教案】相關文章:
高中數學《三角函數》說課稿范文06-08
高中數學三角函數解題技巧分析論文10-11
三角函數的應用數學教案10-09
高中數學選修教案11-08
高中數學教案11-08
高中數學教案(15篇)01-25
人教版高中數學教案范文01-11
高中數學平面向量教案12-02
高中數學教案15篇12-31
高中數學 四種命題 教案12-29