免费 无码进口视频|欧美一级成人观看|亚洲欧美黄色的网站|高清无码日韩偷拍|亚太三区无码免费|在找免费看A片色片一区|激情小说亚洲精品|91人妻少妇一级性av|久久国产综合精品日韓|一级美女操逼大片

教案

七年級數(shù)學(xué)《有理數(shù)的除法》教案

時間:2024-08-06 20:30:20 賽賽 教案 我要投稿

七年級數(shù)學(xué)《有理數(shù)的除法》教案(精選10篇)

  作為一名優(yōu)秀的教育工作者,總歸要編寫教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。來參考自己需要的教案吧!以下是小編收集整理的七年級數(shù)學(xué)《有理數(shù)的除法》教案,歡迎大家分享。

七年級數(shù)學(xué)《有理數(shù)的除法》教案(精選10篇)

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 1

  教學(xué)目標(biāo)

  1.理解有理數(shù)除法的意義,熟練掌握有理數(shù)除法法則,會進(jìn)行運算;

  2.了解倒數(shù)概念,會求給定有理數(shù)的倒數(shù);

  3.通過將除法運算轉(zhuǎn)化為乘法運算,培養(yǎng)學(xué)生的轉(zhuǎn)化的思想;通過運算,培養(yǎng)學(xué)生的運算能力。

  教學(xué)建議

 。ㄒ唬┲攸c、難點分析

  本節(jié)教學(xué)的重點是熟練進(jìn)行運算,教學(xué)難點 是理解法則。

  1.有理數(shù)除法有兩種法則。法則1:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。是把除法轉(zhuǎn)化為乘法來解決問題。法則2是把有理數(shù)除法納入有理數(shù)運算的統(tǒng)一程序:一確定符號;二計算絕對值。如:按法則1計算:原式;按法則2計算:原式。

  2.對于除法的兩個法則,在計算時可根據(jù)具體的情況選用,一般在不能整除的情況下應(yīng)用第一法則。如;在有整除的情況下,應(yīng)用第二個法則比較方便,如;在能整除的`情況下,應(yīng)用第二個法則比較方便,如,如寫成就麻煩了。

 。ǘ┲R結(jié)構(gòu)

  (三)教法建議

  1.學(xué)生實際運算時,老師要強調(diào)先確定商的符號,然后在根據(jù)不同情況采取適當(dāng)?shù)姆椒ㄇ笊痰慕^對值,求商的絕對值時,可以直接除,也可以乘以除數(shù)的倒數(shù)。

  2.關(guān)于0不能做除數(shù)的問題,讓學(xué)生結(jié)合小學(xué)的知識接受這一認(rèn)識就可以了,不必具體講述0為什么不能做除數(shù)的理由。

  3.理解倒數(shù)的概念

  (1)根據(jù)定義乘積為1的兩個數(shù)互為倒數(shù),即:,則互為倒數(shù)。如:,則2與,-2與互為倒數(shù)。

 。2)由倒數(shù)的定義,我們可以得到求已知數(shù)倒數(shù)的一種基本方法:即用1除以已知數(shù),所得商就是已知數(shù)的倒數(shù)。如:求的倒數(shù):計算,-2就是的倒數(shù)。一般我們求已知數(shù)的倒數(shù)很少用這種方法,實際應(yīng)用時我們常把已知數(shù)看作分?jǐn)?shù)形式,然后把分子、分母顛倒位置,所得新數(shù)就是原數(shù)的倒數(shù)。如-2可以看作,分子、分母顛倒位置后為,就是的倒數(shù)。

 。3)倒數(shù)與相反數(shù)這兩個概念很容易混淆。要注意區(qū)分。首先倒數(shù)是指乘積為1的兩個數(shù),而相反數(shù)是指和為0的兩個數(shù)。如:,2與互為倒數(shù),2與-2互為相反數(shù)。其次互為倒數(shù)的兩個數(shù)符號相同,而互為相反數(shù)符號相反。如:-2的倒數(shù)是,-2的相反數(shù)是+2;另外0沒有倒數(shù),而0的相反數(shù)是0。

  4.關(guān)于倒數(shù)的求法要注意:

  (1)求分?jǐn)?shù)的倒數(shù),只要把這個分?jǐn)?shù)的分子、分母顛倒位置即可。

  (2)正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)仍是負(fù)數(shù)。

 。3)負(fù)倒數(shù)的定義:乘積是-1的兩個數(shù)互為負(fù)倒數(shù)。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 2

  一、素質(zhì)教育目標(biāo)

  (一)知識教學(xué)點

  1.了解有理數(shù)除法的定義。

  2.理解倒數(shù)的意義。

  3.掌握有理數(shù)除法法則,會進(jìn)行有理數(shù)的除法運算。

  (二)能力訓(xùn)練點

  1.通過有理數(shù)除法法則的導(dǎo)出及運算,讓學(xué)生體會轉(zhuǎn)化思想。

  2.培養(yǎng)學(xué)生運用數(shù)學(xué)思想指導(dǎo)思維活動的能力。

  (三)德育滲透點

  通過學(xué)習(xí)有理數(shù)除法運算、感知數(shù)學(xué)知識具有普遍聯(lián)系性、相互轉(zhuǎn)化性。

 。ㄋ模┟烙凉B透點

  把小學(xué)算術(shù)里的乘法法則推廣到有理數(shù)范圍內(nèi),體現(xiàn)了知識體系的完整美。

  二、學(xué)法引導(dǎo)

  1.教學(xué)方法:遵循啟發(fā)式教學(xué)原則,注意創(chuàng)設(shè)問題情境,精心構(gòu)思啟發(fā)導(dǎo)語并及時點撥,使學(xué)生主動發(fā)展思維和能力。

  2.學(xué)生學(xué)法:通過練習(xí)探索新知→歸納除法法則→鞏固練習(xí)

  三、重點、難點、疑點及解決辦法

  1.重點:除法法則的靈活運用和倒數(shù)的.概念。

  2.難點:有理數(shù)除法確定商的符號后,怎樣根據(jù)不同的情況來取適當(dāng)?shù)姆椒ㄇ笊痰慕^對值。

  3.疑點:對零不能作除數(shù)與零沒有倒數(shù)的理解。

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、自制膠片、彩粉筆。

  六、師生互動活動設(shè)計

  教師出示探索性練習(xí),學(xué)生討論歸納除法法則,教師出示鞏固性練習(xí),學(xué)生以多種形式完成。

  七、教學(xué)步驟

 。ㄒ唬﹦(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  師:以上我們學(xué)習(xí)了有理數(shù)的乘法,這節(jié)我們應(yīng)該學(xué)習(xí)有理數(shù)的除法,板書課題。

  【教法說明】有理數(shù)的除法同小學(xué)算術(shù)中除法一樣—除以一個數(shù)等于乘以這個數(shù)的倒數(shù),所以必須以學(xué)好求一個有理數(shù)的倒數(shù)為基礎(chǔ)學(xué)習(xí)有理數(shù)的除法

 。ǘ┨剿餍轮v授新課

  倒數(shù)

  【教法說明】在有理數(shù)乘法的基礎(chǔ)上,學(xué)生很容易地做出這幾個題目,在題目的選擇上,注意了數(shù)的全面性,即有正數(shù)、0、負(fù)數(shù),又有整數(shù)、分?jǐn)?shù),在數(shù)的變化中,讓學(xué)生回憶、體會出求各種數(shù)的倒數(shù)的方法。

  師問:兩個數(shù)乘積是1,這兩個數(shù)有什么關(guān)系?

  學(xué)生活動:乘積是1的兩個數(shù)互為倒數(shù)(板書)

  師問:0有倒數(shù)嗎?為什么?

  學(xué)生活動:通過題目0×()=1得出0乘以任何數(shù)都不得1,0沒有倒數(shù)。

  師:引入負(fù)數(shù)后,乘積是1的兩個負(fù)數(shù)也互為倒數(shù),如-4與,與互為倒數(shù),即的倒數(shù)是。

  提出問題:根據(jù)以上題目,怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù)?

  【教法說明】 教師注意創(chuàng)設(shè)問題情境,讓學(xué)生參與思考,循序漸進(jìn)地引出,對于有理數(shù)也有倒數(shù)是。對于怎樣求整數(shù)、分?jǐn)?shù)、小數(shù)的倒數(shù),學(xué)生還很難總結(jié)出方法,提出這個問題是讓學(xué)生帶著問題來做下組練習(xí)。

  【教法說明】例2是檢查學(xué)生對有理數(shù)除法法則的靈活運用能力,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化,并且通過這種轉(zhuǎn)化。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 3

  一、知識與技能

  掌握有理數(shù)除法法則,會進(jìn)行有理數(shù)的除法運算以及分?jǐn)?shù)的化簡。

  二、過程與方法

  通過學(xué)習(xí)有理數(shù)除法法則,體會轉(zhuǎn)化思想,會將乘除混合運算統(tǒng)一為乘法運算。

  三、情感態(tài)度與價值觀

  培養(yǎng)學(xué)生勇于探索積極思考的良好學(xué)習(xí)習(xí)慣。

  四、教學(xué)重、難點與關(guān)鍵

  1.重點:正確應(yīng)用法則進(jìn)行有理數(shù)的除法運算。

  2.難點:靈活運用有理數(shù)除法的兩種法則。

  3.關(guān)鍵:會將有理數(shù)的除法轉(zhuǎn)化為乘法。

  五、教學(xué)過程,課堂引入

  1.小學(xué)里,除法的意義是什么?它與乘法有什么關(guān)系?

  已知兩數(shù)的積與一個因數(shù),求另一個因數(shù)。用除法,乘法與除法互為逆運算除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。

  2.求下列各數(shù)的`倒數(shù):

  (1)-;

  (2)-0.125;

  (3)-1

  六、新授

  引入負(fù)數(shù)后,如何計算有理數(shù)的除法呢?

  例如8(-4)。

  根據(jù)除法意義,這就是要求一個數(shù),使它與-4相乘得8

  因為 (-2)(-4)=8

  所以 8(-4)=-2 ①

  另外,我們知道,8(-)=-2 ②

  由①、②得 8(-4)=8(-) ③

 、凼奖砻鳎粋數(shù)除以-4可以轉(zhuǎn)化為乘以-來進(jìn)行,即一個數(shù)除以-4,等于乘以-4的倒數(shù)-

  探索:換其他數(shù)的除法進(jìn)行類似討論,是否仍有除以a(a0)可以轉(zhuǎn)化為乘以呢?[例如(-10)(-4)]

  從而得出有理數(shù)除法法則:

  除以一個不等于0的數(shù),等于乘以這個數(shù)的倒數(shù)。

  這個法則也可以表示成:

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 4

  設(shè)計理念

  1.注意突出學(xué)生的自主探索,通過一些熟悉的、具體的事物,讓學(xué)生在觀察、思考、探索中體會有理數(shù)的意義,探索數(shù)量關(guān)系,掌握有理數(shù)的運算。教學(xué)中要注重讓學(xué)生通過自己的活動來獲取、理解和掌握這些知識。

  2.本課注意降低了對運算的.要求,尤其是刪去了繁難的運算。注重使學(xué)生理解運算的意義,掌握必要的基本的運算技能。

  教學(xué)目標(biāo)知識與技能:

  1.使學(xué)生理解有理數(shù)倒數(shù)的意義。

  2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運算。

  過程與方法:

  培養(yǎng)學(xué)生觀察、歸納、概括及運算能力。

  情感態(tài)度、價值觀:

  讓學(xué)生感知數(shù)學(xué)來源于生活,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  重點

  有理數(shù)除法法則。

  難點

  (1)、商的符號的確定;

  (2)、0不能作除數(shù)的理解。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.敘述有理數(shù)乘法法則

  2.敘述有理數(shù)乘法的運算律。

  3.計算:

 、(―6)

  ②

 、(―3)(+7)―9(―6)

  ④

  二、自主學(xué)習(xí)計算:

  8

  嘗試

  8(- )

  1.師生共同研究有理數(shù)除法法則:

 、賳栴}:

  一個數(shù)與2的乘積是-6,這個數(shù)是幾?你能否回答?這個問題寫成算式有兩種:

  2( ?)=-6, (乘法算式)

  也就是 (-6)2=( ?) (除法算式)

  由2(-3)=-6,

  我們有(-6)2=-3。另外,我們還知道: (-6) =-3。

  所以,(-6)2=(-6) 。這表明除法可以轉(zhuǎn)化為乘法來進(jìn)行。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 5

  學(xué)習(xí)目標(biāo):

  理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會進(jìn)行有理數(shù)除法運算。

  學(xué)習(xí)重

  正確運用有理數(shù)除法法則進(jìn)行有理數(shù)除法運算。

  學(xué)習(xí)難點

  尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件。

  教學(xué)方法

  引導(dǎo)、探究、歸納與練習(xí)相結(jié)合

  教學(xué)過程

  活動一探討有理數(shù)除法法則:

  獨立完成——合作交流——展示成果

  閱讀課本P35例5以上的內(nèi)容,談?wù)動欣頂?shù)除法法則是如何得出的?換其他數(shù)的除法進(jìn)行類似討論,是否任有除

  目標(biāo)導(dǎo)行:

  1.理解除法的意義、除法是乘法的逆運算。(重點)

  2.理解和掌握有理數(shù)除法的兩個法則,會正確地進(jìn)行有理數(shù)的除法運算。(重點、難點)

  思維診斷:

  (打“√”或“×”)

  (1)0除以任何一個數(shù),都得0。( )

  (2)1除以一個非零數(shù)就等于乘這個數(shù)的倒數(shù)。( )

  (3)兩數(shù)相除,商一定小于被除數(shù)。( )

  (4)兩數(shù)相除商為正數(shù),則這兩個數(shù)均為正數(shù)。( )

  (5)一個不等于0的.有理數(shù)除以它的相反數(shù)等于-1。( )

  【總結(jié)提升】有理數(shù)相除的方法

  1.0除以任何一個不等于0的數(shù),都得0;但0不能作除數(shù).

  2.在進(jìn)行除法運算時,若能整除,則用“兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除”;若不能整除,則用“除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)”.

  3.除法算式中的小數(shù);煞?jǐn)?shù),帶分?jǐn)?shù)化成假分?jǐn)?shù),便于轉(zhuǎn)化為乘法時約分.

  【總結(jié)提升】分?jǐn)?shù)化簡的方法

  1.把分?jǐn)?shù)轉(zhuǎn)化為除法,利用有理數(shù)的除法法則進(jìn)行化簡.

  2.利用分?jǐn)?shù)的基本性質(zhì),分子和分母都乘以同一個數(shù)或都除以同一個不為0的數(shù)結(jié)果不變進(jìn)行化簡.

  6.某自行車廠一周計劃每日生產(chǎn)400輛自行車,由于人數(shù)和操作原因,每日實際生產(chǎn)量分別為405輛、393輛、397輛、410輛、391輛、385輛、405輛.

  (1)用正負(fù)數(shù)表示每日實際生產(chǎn)量與計劃量的增減情況.

  (2)該自行車廠本周實際共生產(chǎn)多少輛自行車?平均每日實際生產(chǎn)多少輛自行車?

  【歸納整合】符號移動法

  化簡分?jǐn)?shù)仍遵循“同號得正,異號得負(fù)”的符號法則,因此可得符號移動法則:分子、分母、分?jǐn)?shù)前面的符號,三者有一個或三個為負(fù),結(jié)果為負(fù),有兩個為負(fù),結(jié)果為正.

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 6

  一、教學(xué)目標(biāo)

  知識與技能:

  ①使學(xué)生在了解乘法的基礎(chǔ)上,掌握有理數(shù)乘法法則并初步掌握有理數(shù)乘法法則的合理性。

 、跁M(jìn)行有理數(shù)乘法運算。

 、哿私庥欣頂(shù)的倒數(shù)定義,會求一個數(shù)的倒數(shù)。

  過程與方法:

  ①經(jīng)歷探索有理數(shù)乘法法則,發(fā)展,觀察,歸納,猜想,驗證的能力以及培養(yǎng)學(xué)生的語言表達(dá)能力。

  ②提高學(xué)生的運算能力

  情感與態(tài)度:通過合作學(xué)習(xí)調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生認(rèn)識世界的水平。

  二、教學(xué)重點和難點

  重點:依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運算;

  難點:有理數(shù)乘法中的符號法則。

  三、教學(xué)過程

  (一)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,復(fù)習(xí)舊知,導(dǎo)入新課

  前面我們學(xué)習(xí)了有理數(shù)的加減法,接下來就應(yīng)該學(xué)習(xí)有理數(shù)的乘除法。同學(xué)們先看下面的問題:甲水庫的水位每天升高3㎝,乙水庫的水位每天下降3㎝。4天后,甲、乙水庫各自水位的總變化量是多少?

  如果用正號表示水位的上升、用負(fù)號表示水位的下降。那么,4天后,甲水庫水位的總變化量是:3+3+3=3×4=12㎝

  乙水庫水位的總變化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4=-12㎝引出課題:有理數(shù)的乘法

  (二)學(xué)生探索新知,歸納法則

  學(xué)生分為四個小組活動,進(jìn)行乘法法則的探索

  設(shè)蝸,F(xiàn)在的位置為點O,若它一直都是沿直線爬行,而且每分鐘爬行2cm,問:

  (1)向右爬行,3分鐘后的位置?

  (2)向左爬行,3分鐘后的位置?

  (3)向右爬行,3分鐘前的位置?

  (4)向左爬行,3分鐘前的位置?

  (學(xué)生思考后回答)要確定蝸牛的位置需要知道:距離和方向。

  為了區(qū)分方向:我們規(guī)定向右為正,向左為負(fù);為區(qū)分時間:我們規(guī)定現(xiàn)在的`時間前為負(fù),現(xiàn)在的時間后為正。

  (1)情形一:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:

  (+2)×(+3)=+6

  數(shù)軸表示如右:

  (2)情形二:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(-2)×3=-6

  數(shù)軸表示如右:

  (3)情形三:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(+2)×(-3)=-6

  數(shù)軸表示如右

  (4)情形四:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:(-2)×(-3)=+6

  數(shù)軸表示如右:

  仔細(xì)觀察上面得到的四個式子:

  (1)(+2)×(+3)=+6

  (2)(-2)×3=-6

  (3)(+2)×(-3)=-6

  (4)(-2)×(-3)=+6

  根據(jù)你對乘法的思考,你得到什么規(guī)律?

  (三)學(xué)生歸納法則

  a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

  (+)×(+)=()同號得

  (-)×(+)=()異號得

  (+)×(-)=()異號得

  (-)×(-)=()同號得

  b.任何數(shù)與零相乘,積仍為。

  (四)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  歸納:有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)與0相乘,積仍為0。

  (五)運用法則計算,鞏固法則。

  例1計算:(1)(-5)×(-3);(2)(-7)×4;(3)(-3)×9;(4)(-3)×(-)

  引導(dǎo)學(xué)生觀察、分析例1中(4)小題兩因數(shù)的關(guān)系,得出:有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).

  例2.見課本P30頁

  (六)分層練習(xí),鞏固提高。

  (1)計算(口答):

  ①②③④

 、茛蔻撷

  四、課題小結(jié)

  (1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘,任何數(shù)同0相乘,都得0。

  (2)如何進(jìn)行兩個有理數(shù)的乘法運算:先確定積的符號,再把絕對值相乘,當(dāng)有一個因數(shù)為零時,積為零。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 7

  教學(xué)目標(biāo)

  1.使學(xué)生理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會進(jìn)行有理數(shù)除法運算;

  2.運用轉(zhuǎn)化思想,理解有理數(shù)除法的意義,培養(yǎng)學(xué)生新舊知識之間聯(lián)系的思維能力,通過乘除法之間的逆運算,培養(yǎng)學(xué)生逆向思維的能力,提高學(xué)生的計算能力,培養(yǎng)轉(zhuǎn)化和全面分析問題的能力。

  學(xué)情分析

  本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)的基礎(chǔ)上學(xué)習(xí)的,學(xué)生學(xué)起來比較容易

  重點難點

  1.教學(xué)重點:正確運用有理數(shù)除法法則進(jìn)行有理數(shù)除法運算;

  2.教學(xué)難點:理解零不能做除數(shù),零沒有倒數(shù),尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件;

  教學(xué)過程

  有理數(shù)的除法

  教學(xué)活動

  活動1

  有理數(shù)的除法

  一、課前復(fù)習(xí)提問

  1.有理數(shù)乘法法則;

  2.有理數(shù)乘法的運算律:乘法交換律,乘法結(jié)合律,乘法分配律;

  3.倒數(shù)的意義.

  二、講授新課

 。ㄒ唬┯欣頂(shù)除法法則的推導(dǎo)

  [問題]怎樣計算8÷(-4)呢?

  [提問]小學(xué)學(xué)過的除法的意義是什么?

  得出 ①8÷(-4)=-2;又②8×( )=-2;于是有

 、8÷(-4)=8×( )。

  由此得出有理數(shù)除法法則:

  除以一個不等于0的數(shù),等于乘以這個數(shù)的倒數(shù)。

  可以表示為:

  a÷b=a· (b≠0) .

  類似于乘法法則可得:

  兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除,零除以任何一個不等于0的數(shù),都得0。

  對有理數(shù)除法法則的理解:

 。1)法則所揭示的內(nèi)容告訴我們,有理數(shù)除法與小學(xué)時學(xué)的除法一樣,它是乘法的`逆運算,是借助“倒數(shù)”為媒介,將除法運算轉(zhuǎn)化為乘法運算進(jìn)行(強調(diào),因為0沒有倒數(shù),所以除數(shù)不能為0);

 。2)法則揭示有理數(shù)除法的運算步驟:第一步,確定商的符號,第二步,求出商的絕對值。

  (二)有理數(shù)除法法則的運用

  例1 計算:(1)(-36)÷9;

 。2)( )÷( )。

  強調(diào):兩數(shù)相除,先確定商的符號,再確定商的絕對值。

  例2 化簡下列分?jǐn)?shù):

 。1) ; (2) .

  強調(diào):(1)符號法則;(2)一般來說,在能整除的情況下,往往采用法則的后一種形式,在確定符號后,直接除在不能整除的情況下,則往往將除數(shù)換成倒數(shù),轉(zhuǎn)化為乘法.

  例3 計算:

  (1)(-125 )÷(-5);

 。2)-2.5÷ ;

  (三)小結(jié)

  1.通過小學(xué)除法意義的理解和類比,得出有理數(shù)除法法則,法則一:除以一個數(shù)等于乘以這個數(shù)的倒數(shù),零不能做除數(shù)。法則二:兩數(shù)相除,同號得正,異好號得負(fù),并把絕對值相除;零除以任何一個不等于零的數(shù)都得零。

  2.有理數(shù)的除法有兩種方法,一般能整除時用第二種方法,強調(diào)要先確定結(jié)果的符號。

  (四)教學(xué)反思

  本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)乘法的基礎(chǔ)上學(xué)習(xí)的,在小學(xué)的時候已經(jīng)學(xué)習(xí)了兩數(shù)的除法法則,所以這節(jié)課的內(nèi)容對大部分學(xué)生來說,不是很難,他們只要會確定兩數(shù)相除商的符號,然后在求商的絕對值就可以了。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 8

  教學(xué)目標(biāo)

  1.使學(xué)生理解有理數(shù)倒數(shù)的意義;

  2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運算;

  3.培養(yǎng)學(xué)生觀察、歸納、概括及運算能力。

  教學(xué)重點和難點

  重點:有理數(shù)除法法則。

  難點:

  (1)商的符號的確定。

  (2)0不能作除數(shù)的理解。

  教學(xué)手段

  現(xiàn)代課堂教學(xué)手段

  教學(xué)方法

  啟發(fā)式教學(xué)

  教學(xué)過程

 。ㄒ唬膶W(xué)生原有認(rèn)知結(jié)構(gòu)提出問題

  1.敘述有理數(shù)乘法法則。

  2.敘述有理數(shù)乘法的運算律。

  3.計算:

  (1)3×(-2); (2)-3×5; (3)(-2)×(-5)。

 。ǘ、導(dǎo)入新課

  因為3×(-2)=-6,所以3x=-6時,可以解得x=-2;

  同樣-3×5=-15,解簡易方程-3x=-15,得x=5。

  在找x的值時,就是求一個數(shù)乘以3等于-6;或者是找一個數(shù),使它乘以-3等于-15。已知一個因數(shù)的積,求另一個因數(shù),就是在小學(xué)學(xué)過的除法,除法是乘法的逆運算。

  三、講授新課

  1.有埋數(shù)的倒數(shù)

  0沒有倒數(shù),(0不能作除數(shù),分母是0沒有意義等概念在小學(xué)里是反復(fù)強調(diào)的)

  提問:怎樣求一個數(shù)的倒數(shù)?

  答:整數(shù)可以看成分母是1的分?jǐn)?shù),求分?jǐn)?shù)的倒數(shù)是把這個數(shù)的分母與分子顛倒一下即可;求一個小數(shù)的倒數(shù),可以先把這個小數(shù)化成分

  數(shù)再求倒數(shù)。

  什么性質(zhì)

  所以我們說:乘積為1的兩個數(shù)互為倒數(shù),這個定義對有理數(shù)仍然適用。

  這里a≠0,同小學(xué)一樣,在有理數(shù)范圍內(nèi),0不能作除數(shù),或者說0為分母時分?jǐn)?shù)無意義。

  2.有理數(shù)除法法則

  利用有理數(shù)倒數(shù)的概念,我們進(jìn)一步學(xué)習(xí)有理數(shù)除法。

  因為(-2)×(-4)=8,所以8÷(-4)=-2。

  由此,我們可以看出小學(xué)學(xué)過的除法法則仍適用于有理數(shù)除法,即

  除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。

  0不能作除數(shù)。

  例1 計算:

  課堂練習(xí)

  (1)寫出下列各數(shù)的倒數(shù):

  (2)計算:

  3.有理數(shù)除法的符號法則

  觀察上面的練習(xí),引導(dǎo)學(xué)生總結(jié)出有理數(shù)除法的.商的符號法則:

  兩數(shù)相除,同號得正,異號得負(fù)。

  掌握符號法則,有的題就不必再將除數(shù)化成倒數(shù)再去乘了,可以確定符號后直接相除,這就是第二個有理數(shù)除法法則:

  兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。

  0除以任何一個不為0的數(shù),都得0。

  ≠0).利用除法法則可以化簡分?jǐn)?shù)。

  例2 化簡下列分?jǐn)?shù):

  例3 計算:

  (4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9。

 。ㄋ模⑿〗Y(jié)

  1.指導(dǎo)學(xué)生看書,重點是除法法則。

  2.引導(dǎo)學(xué)生歸納有理數(shù)除法的一般步驟:

  (1)確定商的符號;

  (2)把除數(shù)化為它的倒數(shù);

  (3)利用乘法計算結(jié)果。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 9

  學(xué)習(xí)目標(biāo):

  1、學(xué)會用計算器進(jìn)行有理數(shù)的除法運算。

  2、掌握有理數(shù)的混合運算順序。

  3、通過探究、練習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣。

  學(xué)習(xí)重點:

  有理數(shù)的混合運算

  學(xué)習(xí)難點:

  運算順序的確定與性質(zhì)符號的處理

  教學(xué)方法:

  觀察、類比、對比、歸納

  教學(xué)過程

  一、學(xué)前準(zhǔn)備

  1、計算

  1)(—0.0318)÷(—1.4)2)2+(—8)÷2

  二、探究新知

  1、由上面的問題1,計算方便嗎?想過別的方法嗎?

  2、由上面的問題2,你的計算方法是先算法,再算法。

  3、結(jié)合問題1,閱讀課本P36—P37頁內(nèi)容(帶計算器的'同學(xué)跟著操作、練習(xí))

  4、結(jié)合問題2,你先猜想,有理數(shù)的混合運算順序應(yīng)該是?

  5、閱讀P36,并動手做做

  三、新知應(yīng)用

  1、計算

  1)、18—6÷(—2)×2)11+(—22)—3×(—11)

  3)(—0.1)÷×(—100)

  2、師生小結(jié)

  四、回顧與反思

  請你回顧本節(jié)課所學(xué)習(xí)的主要內(nèi)容。

  七年級數(shù)學(xué)《有理數(shù)的除法》教案 10

  學(xué)習(xí)目標(biāo):

  1、要熟記有理數(shù)除法的法則,會進(jìn)行有理數(shù)除法的運算。

  2、掌握求有理數(shù)倒數(shù)的方法,并能熟練地求出一個給定的有理數(shù)的倒數(shù)。

  3、能熟練地進(jìn)行簡單的有理數(shù)的加減乘除混合運算。

  4、體會比較、轉(zhuǎn)化、分類的思想方法,在探索有理數(shù)除法法則時的應(yīng)有

  學(xué)習(xí)重點

  有理數(shù)除法的法則及應(yīng)用;求一個有理數(shù)的倒數(shù)。

  學(xué)習(xí)難點:

  在進(jìn)行有理數(shù)除法運算時,能根據(jù)題目特點,恰當(dāng)?shù)剡x擇有理數(shù)的除法法則。

  學(xué)習(xí)過程:

  一、前置復(fù)習(xí) :

  1、有理數(shù)的乘法法則是:

  舉例說明。

  2、多個有理數(shù)乘法:(1)幾個不等于0的有理數(shù)相乘,積的符號由 決定,當(dāng) 時積為正;當(dāng) 時積為負(fù)。

  (2)幾個有理數(shù)相乘, ,積就為零。

  二、探究新知:(教師寄語: 現(xiàn)實世界中的事物都是既相互聯(lián)系又可以相互轉(zhuǎn)化的,在數(shù)學(xué)上加與減,乘與除也是可以相互轉(zhuǎn)化的)

  自學(xué)課本58頁至59頁例4之前的內(nèi)容,并且認(rèn)真體會在探索除法與乘法的關(guān)系時,用到的比較、轉(zhuǎn)化、分類的思想方法,一定要熟記:

  (1) 有理數(shù)除法運算轉(zhuǎn)化為乘法運算的法則:除以一個數(shù),________________________。

  ____________________。

  (2) 有理數(shù)的除法法則:兩數(shù)相除,_____________,_____________,_____________。

  0除以任何_______________________________。

  (3) 與以前學(xué)過的倒數(shù)的概念一樣,___________兩個有理數(shù)互為倒數(shù)。

  如,3與____互為倒數(shù),-6與_____互為倒數(shù),2.25是____的倒數(shù),___是 的倒數(shù)。

  三、新知應(yīng)用:

  例1、獨立完成課本58頁例4,然后對比課本上的.解答,思考交流:在兩個________數(shù)相除時,可選擇法則(1),在兩個_______數(shù)相除時,可選擇法則(2)

  學(xué)以致用 計算:

  (1) (42)7 (2) ( )( )

  例2、計算(1) ( )( )( ) (2) ( )( )

  (溫馨提示:1、 有理數(shù)的乘除混合運算,應(yīng)把除以一個數(shù)轉(zhuǎn)化成乘這個數(shù)的倒數(shù),然后統(tǒng)一成乘法來進(jìn)行計算。2、 加減乘除混合運算的運算順序和小學(xué)一樣。)

  四、課堂練習(xí):獨立完成課本P59練習(xí)2,3題。(將完整的計算過程寫在下面空白處)

  五、總結(jié)反思:

  1、說一說:

  本節(jié)課我學(xué)會了 ;

  使我感觸最深的是 ;

  我感到最困難的是 ;

  我想進(jìn)一步探究的問題是 。

  2、評一評

  自我評價 小組評價 教師評價

【七年級數(shù)學(xué)《有理數(shù)的除法》教案】相關(guān)文章:

數(shù)學(xué)有理數(shù)的除法教案03-26

七年級數(shù)學(xué)有理數(shù)的除法的教案03-26

人教版數(shù)學(xué)有理數(shù)的除法教案設(shè)計03-26

關(guān)于有理數(shù)的除法教學(xué)教案10-08

七年級數(shù)學(xué)有理數(shù)教案09-30

小學(xué)數(shù)學(xué)除法教案06-08

小學(xué)數(shù)學(xué)除法的教案10-07

數(shù)學(xué)小數(shù)除法教案07-25

小學(xué)數(shù)學(xué)除法教案10-07