- 相關(guān)推薦
對(duì)數(shù)函數(shù)教案
作為一名教職工,可能需要進(jìn)行教案編寫(xiě)工作,教案有助于學(xué)生理解并掌握系統(tǒng)的知識(shí)。那么什么樣的教案才是好的呢?下面是小編整理的對(duì)數(shù)函數(shù)教案,僅供參考,大家一起來(lái)看看吧。

對(duì)數(shù)函數(shù)教案1
教學(xué)目標(biāo)
1.把握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在把握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
(2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究熟悉對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題。
2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類(lèi)討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱(chēng)美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
教學(xué)建議
教材分析
(1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類(lèi)重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步熟悉與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
(2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,把握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3) 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的`難點(diǎn)。
教法建議
(1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的熟悉逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的熟悉,而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,從而提高學(xué)習(xí)愛(ài)好。
教學(xué)設(shè)計(jì)示例
對(duì)數(shù)函數(shù)
教學(xué)目標(biāo)
1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生把握對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖像,把握對(duì)數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡(jiǎn)單問(wèn)題。
2. 通過(guò)對(duì)數(shù)函數(shù)的學(xué)習(xí),樹(shù)立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類(lèi)討論的思想。
3. 通過(guò)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,把握?qǐng)D像和性質(zhì)。
難點(diǎn)是由對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對(duì)數(shù)函數(shù)的圖像和性質(zhì)。
教學(xué)方法
啟發(fā)研討式
教學(xué)用具
投影儀
教學(xué)過(guò)程
一、 引入新課
今天我們一起再來(lái)研究一種常見(jiàn)函數(shù)。前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù)。
反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù)。這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù)。
提問(wèn):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說(shuō)出 是指數(shù)函數(shù),它是存在反函數(shù)的。并由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程:
由 得 .又 的值域?yàn)?,所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)對(duì)數(shù)函數(shù)。
2.8對(duì)數(shù)函數(shù) (板書(shū))
一、對(duì)數(shù)函數(shù)的概念
1. 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù)。
由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā)。如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的熟悉是什么?
教師可提示學(xué)生從反函數(shù)的三定與三反去熟悉,從而找出對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .
在此基礎(chǔ)上,我們將一起來(lái)研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)。
二。對(duì)數(shù)函數(shù)的圖像與性質(zhì) (板書(shū))
1. 作圖方法
提問(wèn)學(xué)生打算用什么方法來(lái)畫(huà)函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫(huà)圖。同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫(huà)圖。
由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類(lèi)型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫(huà)圖。
具體操作時(shí),要求學(xué)生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).
(2) 畫(huà)出直線 .
(3) 的圖像在翻折時(shí)先將非凡點(diǎn) 對(duì)稱(chēng)點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱(chēng)為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分。
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫(huà)出
和 的圖像。(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫(huà)在同一坐標(biāo)系內(nèi))如圖:
2. 草圖。
教師畫(huà)完圖后再利用投影儀將 和 的圖像畫(huà)在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明)
3. 性質(zhì)
(1) 定義域:
(2) 值域:
由以上兩條可說(shuō)明圖像位于 軸的右側(cè)。
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無(wú)交點(diǎn)即以 軸為漸近線。
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于 軸對(duì)稱(chēng)。
(5) 單調(diào)性:與 有關(guān)。當(dāng) 時(shí),在 上是增函數(shù)。即圖像是上升的
當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的。
之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書(shū)記下來(lái)。
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖。且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶。(非凡強(qiáng)調(diào)它們單調(diào)性的一致性)
對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用。
三、簡(jiǎn)單應(yīng)用 (板書(shū))
1. 研究相關(guān)函數(shù)的性質(zhì)
例1. 求下列函數(shù)的定義域:
對(duì)數(shù)函數(shù)教案2
學(xué)習(xí)目標(biāo)
1. 通過(guò)具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫(huà)的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類(lèi)重要的函數(shù)模型;
2. 能借助計(jì)算器或計(jì)算機(jī)畫(huà)出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);
3. 通過(guò)比較、對(duì)照的方法,引導(dǎo)學(xué)生結(jié)合圖象類(lèi)比指數(shù)函數(shù),探索研究對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)數(shù)形結(jié)合的思想方法,學(xué)會(huì)研究函數(shù)性質(zhì)的方法.
舊知提示
復(fù)習(xí):若 ,則 ,其中 稱(chēng)為 ,其范圍為 , 稱(chēng)為 .
合作探究(預(yù)習(xí)教材P70- P72,找出疑惑之處)
探究1:元旦晚會(huì)前,同學(xué)們剪彩帶備用,F(xiàn)有一根彩帶,將其對(duì)折后,沿折痕剪開(kāi),可將所得的兩段放在一起,對(duì)折再剪段。設(shè)所得的彩帶的根數(shù)為 ,剪的次數(shù)為 ,試用 表示 .
新知:對(duì)數(shù)函數(shù)的概念
試一試:以下函數(shù)是對(duì)數(shù)函數(shù)的是( )
A. B. C. D. E.
反思:對(duì)數(shù)函數(shù)定義與指數(shù)函數(shù)類(lèi)似,都是形式定義,注意辨別,如: , 都不是對(duì)數(shù)函數(shù),而只能稱(chēng)其為對(duì)數(shù)型函數(shù);對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制 ,且 .
探究2:你能類(lèi)比前面討論指數(shù)函數(shù)性質(zhì)的思路,提出研究對(duì)數(shù)函數(shù)性質(zhì)的內(nèi)容和方法嗎?
研究方法:畫(huà)出函數(shù)圖象,結(jié)合圖象研究函數(shù)性質(zhì).
研究?jī)?nèi)容:定義域、值域、特殊點(diǎn)、單調(diào)性、最大(小)值、奇偶性.
作圖:在同一坐標(biāo)系中畫(huà)出下列對(duì)數(shù)函數(shù)的圖象.
新知:對(duì)數(shù)函數(shù)的圖象和性質(zhì):
象
定義域
值域
過(guò)定點(diǎn)
單調(diào)性
思考:當(dāng) 時(shí), 時(shí), ; 時(shí), ;
當(dāng) 時(shí), 時(shí), ; 時(shí), .
典型例題
例1求下列函數(shù)的定義域:(1) ; (2) .
例2比較大小:
(1) ; (2) ; (3) ;(4) 與 .
課堂小結(jié)
1. 對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);
2. 求定義域;
3. 利用單調(diào)性比大小.
知識(shí)拓展
對(duì)數(shù)函數(shù)凹凸性:函數(shù) , 是任意兩個(gè)正實(shí)數(shù).
當(dāng) 時(shí), ;當(dāng) 時(shí), .
學(xué)習(xí)評(píng)價(jià)
1. 函數(shù) 的定義域?yàn)? )
A. B. C. D.
2. 函數(shù) 的定義域?yàn)? )
A. B. C. D.
3. 函數(shù) 的定義域是 .
4. 比較大小:
(1)log 67 log 7 6 ; (2) ; (3) .
課后作業(yè)
1. 不等式的 解集是( ).
A. B. C. D.
2. 若 ,則( )
A. B. C. D.
3. 當(dāng)a1時(shí),在同一坐標(biāo)系中,函數(shù) 與 的圖象是( ).
4. 已知函數(shù) 的定義域?yàn)?,函數(shù) 的定義域?yàn)?,則有( )
A. B. C. D.
5. 函數(shù) 的定義域?yàn)?.
6. 若 且 ,函數(shù) 的圖象恒過(guò)定點(diǎn) ,則 的坐標(biāo)是 .
7.已知 ,則 = .
8. 求下列函數(shù)的定義域:
2.2.2 對(duì)數(shù)函數(shù)及其性質(zhì)(2)
學(xué)習(xí)目標(biāo)
1. 解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡(jiǎn)單應(yīng)用;2. 進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì);
3. 學(xué)習(xí)反函數(shù)的概念,理解對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標(biāo)上看出互為反函數(shù)的兩個(gè)函數(shù)的圖象性質(zhì).
舊知提示
復(fù)習(xí)1:對(duì)數(shù)函數(shù) 圖象和性質(zhì).
a1 0
圖性質(zhì)
(1)定義域:
(2)值域:
(3)過(guò)定點(diǎn):
(4)單調(diào)性:
復(fù)習(xí)2:比較兩個(gè)對(duì)數(shù)的大小:(1) ; (2) .
復(fù)習(xí)3:(1) 的定義域?yàn)?;
(2) 的定義域?yàn)?.
復(fù)習(xí)4:右圖是函數(shù) , , , 的圖象,則底數(shù)之間的關(guān)系為 .
合作探究 (預(yù)習(xí)教材P72- P73,找出疑惑之處)
探究:如何由 求出x?
新知:反函數(shù)
試一試:在同一平面直角坐標(biāo)系中,畫(huà)出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質(zhì)?
反思:
(1)如果 在函數(shù) 的圖象上,那么P0關(guān)于直線 的對(duì)稱(chēng)點(diǎn)在函數(shù) 的圖象上嗎?為什么?
(2)由上述過(guò)程可以得到結(jié)論:互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于 對(duì)稱(chēng).
典型例題
例1求下列函數(shù)的反函數(shù):
(1) ; (2) .
提高:①設(shè)函數(shù) 過(guò)定點(diǎn) ,則 過(guò)定點(diǎn) .
、诤瘮(shù) 的反函數(shù)過(guò)定點(diǎn) .
③己知函數(shù) 的圖象過(guò)點(diǎn)(1,3)其反函數(shù)的圖象過(guò)點(diǎn)(2,0),則 的表達(dá)式為 .
小結(jié):求反函數(shù)的步驟(解x 習(xí)慣表示定義域)
例2溶液酸堿度的測(cè)量問(wèn)題:溶液酸堿度pH的計(jì)算公式 ,其中 表示溶液中氫離子的.濃度,單位是摩爾/升.
(1)分析溶液酸堿度與溶液中氫離子濃度之間的變化關(guān)系?
(2)純凈水 摩爾/升,計(jì)算其酸堿度.
例3 求下列函數(shù)的值域:(1) ;(2) .
課堂小結(jié)
、 函數(shù)模型應(yīng)用思想;② 反函數(shù)概念.
知識(shí)拓展
函數(shù)的概念重在對(duì)于某個(gè)范圍(定義域)內(nèi)的任意一個(gè)自變量x的值,y都有唯一的值和它對(duì)應(yīng). 對(duì)于一個(gè)單調(diào)函數(shù),反之對(duì)應(yīng)任意y值,x也都有惟一的值和它對(duì)應(yīng),從而單調(diào)函數(shù)才具有反函數(shù). 反函數(shù)的定義域是原函數(shù)的值域,反函數(shù)的值域是原函數(shù)的定義域,即互為反函數(shù)的兩個(gè)函數(shù),定義域與值域是交叉相等.
學(xué)習(xí)評(píng)價(jià)
1. 函數(shù) 的反函數(shù)是( ).
A. B. C. D.
2. 函數(shù) 的反函數(shù)的單調(diào)性是( ).
A. 在R上單調(diào)遞增 B. 在R上單調(diào)遞減
C. 在 上單調(diào)遞增 D. 在 上單調(diào)遞減
3. 函數(shù) 的反函數(shù)是( ).
A. B. C. D.
4. 函數(shù) 的值域?yàn)? ).
A. B. C. D.
5. 指數(shù)函數(shù) 的反函數(shù)的圖象過(guò)點(diǎn) ,則a的值為 .
6. 點(diǎn) 在函數(shù) 的反函數(shù)圖象上,則實(shí)數(shù)a的值為 .
課后作業(yè)
1. 函數(shù) 的反函數(shù)為( )
A. B. C. D.
2. 設(shè) , , , ,則 的大小關(guān)系是( )
A. B. C. D.
3. 的反函數(shù)為 .
4. 函數(shù) 的值域?yàn)?.
5. 已知函數(shù) 的反函數(shù)圖象經(jīng)過(guò)點(diǎn) ,則 .
6. 設(shè) ,則滿(mǎn)足 的 值為 .
7. 求下列函數(shù)的反函數(shù).
(1) y= ; (2)y= (a1,x (3) .
對(duì)數(shù)函數(shù)教案3
教學(xué)目標(biāo):
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過(guò)程:
一、問(wèn)題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問(wèn)題.
(1)函數(shù)y=log2x的值域是 ;
(2)函數(shù)y=log2x(x≥1)的值域是 ;
(3)函數(shù)y=log2x(0
3.情境問(wèn)題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問(wèn)題.
三、數(shù)學(xué)運(yùn)用
例1 求函數(shù)y=log2(x2+2x+2)的定義域和值域.
練習(xí):
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數(shù) ,x(0,8]的.值域是 .
(3)函數(shù)y=log (x2-6x+17)的值域 .
(4)函數(shù) 的值域是_______________.
例2 判斷下列函數(shù)的奇偶性:
(1)f (x)=lg (2)f (x)=ln( -x)
例3 已知loga 0.75>1,試求實(shí)數(shù)a 取值范圍.
例4 已知函數(shù)y=loga(1-ax)(a>0,a≠1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域?yàn)镽的有 (請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg( -1)的圖象關(guān)于 對(duì)稱(chēng).
3.已知函數(shù) (a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),那么實(shí)數(shù)m= .
4.求函數(shù) ,其中x [ ,9]的值域.
四、要點(diǎn)歸納與方法小結(jié)
(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫(huà)出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
五、作業(yè)
課本P70~71-4,5,10,11.
對(duì)數(shù)函數(shù)教案4
【學(xué)習(xí)目標(biāo)】
一、過(guò)程目標(biāo)
1.通過(guò)師生之間、學(xué)生與學(xué)生之間的互相交流,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力和與人合作的精神。
2.通過(guò)對(duì)對(duì)數(shù)函數(shù)的學(xué)習(xí),樹(shù)立相互聯(lián)系、相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3.通過(guò)對(duì)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察、分析、歸納的思維能力。
二、識(shí)技能目標(biāo)
1.理解對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖象,感受研究對(duì)數(shù)函數(shù)的意義。
2.掌握對(duì)數(shù)函數(shù)的性質(zhì),并能初步應(yīng)用對(duì)數(shù)的性質(zhì)解決簡(jiǎn)單問(wèn)題。
三、情感目標(biāo)
1.通過(guò)學(xué)習(xí)對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì),使學(xué)生體會(huì)知識(shí)之間的有機(jī)聯(lián)系,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.在教學(xué)過(guò)程中,通過(guò)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)觀察、分析、歸納的思維能力以及數(shù)學(xué)交流能力,增強(qiáng)學(xué)習(xí)的積極性,同時(shí)培養(yǎng)學(xué)生傾聽(tīng)、接受別人意見(jiàn)的優(yōu)良品質(zhì)。
教學(xué)重點(diǎn)難點(diǎn):
1.對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)。
2.對(duì)數(shù)函數(shù)性質(zhì)的初步應(yīng)用。
教學(xué)工具:多媒體
學(xué)前準(zhǔn)備:對(duì)照指數(shù)函數(shù)試研究對(duì)數(shù)函數(shù)的定義、圖象和性質(zhì)。
1.教學(xué)方法
建構(gòu)主義學(xué)習(xí)觀,強(qiáng)調(diào)以學(xué)生為中心,學(xué)生在教師指導(dǎo)下對(duì)知識(shí)的主動(dòng)建構(gòu)。它既強(qiáng)調(diào)學(xué)習(xí)者的認(rèn)知主體作用,又不忽視教師的指導(dǎo)作用。高中一年級(jí)的學(xué)生正值身心發(fā)展的過(guò)渡時(shí)期,思維活躍,具有一定的獨(dú)立性,喜歡新鮮事物,敢于大膽發(fā)表自己的見(jiàn)解,不過(guò)思維還不是很成熟.
在目標(biāo)分析的基礎(chǔ)上,根據(jù)建構(gòu)主義學(xué)習(xí)觀,及學(xué)生的認(rèn)知特點(diǎn),我擬采用“探究式”教學(xué)方法。將一節(jié)課的核心內(nèi)容通過(guò)四個(gè)活動(dòng)的形式引導(dǎo)學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu)。其理論依據(jù)為建構(gòu)主義學(xué)習(xí)理論。它很好地體現(xiàn)了“學(xué)生為主體,教師為主導(dǎo),問(wèn)題為主線,思維為主攻”的“四為主”的教學(xué)思想。
2.學(xué)法指導(dǎo)
新課程強(qiáng)調(diào)“以學(xué)生發(fā)展為核心”,強(qiáng)調(diào)培養(yǎng)學(xué)生的自主探索能力與合作學(xué)習(xí)能力。因此本節(jié)課學(xué)生將在教師的啟發(fā)誘導(dǎo)下對(duì)教師提供的素材經(jīng)歷創(chuàng)設(shè)情境→獲得新知→作圖察質(zhì)→問(wèn)題探究→歸納性質(zhì)→學(xué)以致用→趁熱打鐵→畫(huà)龍點(diǎn)睛→自我提升的過(guò)程,這一過(guò)程將激發(fā)學(xué)生積極參與到教學(xué)活動(dòng)中來(lái)。
3.教學(xué)手段
本節(jié)課我選擇計(jì)算機(jī)輔助教學(xué)。增大課堂容量,提高課堂效率;激發(fā)學(xué)生的學(xué)習(xí)興趣,展示運(yùn)動(dòng)變化過(guò)程,使信息技術(shù)真正為教學(xué)服務(wù).
4.教學(xué)流程
四、教學(xué)過(guò)程
教學(xué)過(guò)程
設(shè)計(jì)意圖
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動(dòng)1:(1)同學(xué)們有沒(méi)有看過(guò)《冰河世紀(jì)》這個(gè)電影?先播放視頻,引入課題。
。2)考古學(xué)家經(jīng)過(guò)長(zhǎng)期實(shí)踐,發(fā)現(xiàn)凍土層內(nèi)某微量元素的含量p與年份t的關(guān)系:,這是一個(gè)指數(shù)式,由指數(shù)與對(duì)數(shù)的關(guān)系,此指數(shù)式可改寫(xiě)為對(duì)數(shù)式。
。3)考古學(xué)家提取了凍土層內(nèi)微量元素,確定它的殘余量約占原始含量的1%,即p=0.01,代入對(duì)數(shù)式,可知
。4)由表格中的數(shù)據(jù):
可讀出精確年份為39069,當(dāng)p值為0.001時(shí),t大約為57104年,所以每一個(gè)p值都與一個(gè)t值相對(duì)應(yīng),是一一對(duì)應(yīng)關(guān)系,所以p與t之間是函數(shù)關(guān)系。
。5)數(shù)學(xué)知識(shí)不但可以解決猛犸象的封存時(shí)間,也可以與其他學(xué)科的知識(shí)相結(jié)合來(lái)解決視頻中的遺留問(wèn)題,就是不知道咱們中國(guó)的猛犸象克隆問(wèn)題會(huì)由班里的哪位同學(xué)解決,我們拭目以待。
(6)把函數(shù)模型一般化,可給出對(duì)數(shù)函數(shù)的概念。
通過(guò)這個(gè)實(shí)例激發(fā)學(xué)生學(xué)習(xí)的興趣,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于實(shí)踐,并為實(shí)踐服務(wù)。
和學(xué)生一起分析處理問(wèn)題,體會(huì)函數(shù)關(guān)系,并體現(xiàn)學(xué)生的主體地位。
二、形成概念、獲得新知
定義:一般地,我們把函數(shù)
叫做對(duì)數(shù)函數(shù)。其中x是自變量,定義域?yàn)?/p>
例1求下列函數(shù)的定義域:
。1);(2).
解:(1)函數(shù)的定義域是。
。2)函數(shù)的定義域是。
歸納:形如的的函數(shù)的定義域要考慮—
三、探究歸納、總結(jié)性質(zhì)
活動(dòng)1:小組合作,每個(gè)組內(nèi)分別利用描點(diǎn)法畫(huà)和的圖象,組長(zhǎng)合理分工,看哪個(gè)小組完成的最好。
選取完成最好、最快的小組,由組長(zhǎng)在班內(nèi)展示。
活動(dòng)2:小組討論,對(duì)任意的a值,對(duì)數(shù)函數(shù)圖象怎么畫(huà)?
教師帶領(lǐng)學(xué)生一起舉手,共同畫(huà)圖。
活動(dòng)3:對(duì)a>1時(shí),觀察圖象,你能發(fā)現(xiàn)圖象有哪些圖形特征嗎?
然后由學(xué)生討論完成下表左邊:
函數(shù)的圖象特征
函數(shù)的性質(zhì)
圖象都位于y軸的右方
定義域是
圖象向上向下無(wú)限延展
值域是r
圖象都經(jīng)過(guò)點(diǎn)(1,0)
當(dāng)x=1時(shí),總有y=0
當(dāng)a>1時(shí),圖象逐漸上升;
當(dāng)0當(dāng)a>1時(shí),是增函數(shù)
當(dāng)0通過(guò)對(duì)定義的進(jìn)一步理解,培養(yǎng)學(xué)生思維的嚴(yán)密性和批判性。
通過(guò)作出具體函數(shù)圖象,讓學(xué)生體會(huì)由特殊到一般的研究方法。
學(xué)生可類(lèi)比指數(shù)函數(shù)的研究過(guò)程,獨(dú)立研究對(duì)數(shù)函數(shù)性質(zhì),從而培養(yǎng)學(xué)生探究歸納、分析問(wèn)題、解決問(wèn)題的能力。
師生一起完成表格右邊,對(duì)0<a<1時(shí),找兩位同學(xué)一問(wèn)一答共同完成,再次體現(xiàn)數(shù)形結(jié)合。
四、探究延伸
。1)探討對(duì)數(shù)函數(shù)中的符號(hào)規(guī)律.
(2)探究底數(shù)分別為與的對(duì)數(shù)函數(shù)圖像的關(guān)系.
。3)在第一象限中,探究底數(shù)分別為的對(duì)數(shù)函數(shù)圖象與底數(shù)a的'關(guān)系.
五、分析例題、鞏固新知
例2比較下列各組數(shù)中兩個(gè)值的大。
解:
。1)在上是增函數(shù),且3.4
。2)在上是減函數(shù),且3.4
。3)注:底數(shù)非常數(shù),要分類(lèi)討論的范圍.
當(dāng)a>1時(shí),在上是增函數(shù),且3.4
當(dāng)0且3.4
練習(xí)1:比較下列兩個(gè)數(shù)的大。
練習(xí)2:比較下列兩個(gè)數(shù)的大。
。ㄕ覍W(xué)生上黑板講解練習(xí)2的第一題,強(qiáng)調(diào)多種做法,一起完成第二小題.)
考察學(xué)生對(duì)對(duì)數(shù)函數(shù)圖像的理解與掌握,進(jìn)一步強(qiáng)調(diào)數(shù)形結(jié)合。
通過(guò)運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性“比較兩數(shù)的大小”培養(yǎng)學(xué)生運(yùn)用函數(shù)的觀點(diǎn)解決問(wèn)題,逐步向?qū)W生滲透函數(shù)的思想,分類(lèi)討論的思想,提高學(xué)生的發(fā)散思維能力。
六、對(duì)比總結(jié)、深化認(rèn)識(shí)
先總結(jié)本節(jié)課所學(xué)內(nèi)容,由學(xué)生總結(jié),教師補(bǔ)充,強(qiáng)調(diào)哪些是重要內(nèi)容
(1)對(duì)數(shù)函數(shù)的定義;
。2)對(duì)數(shù)函數(shù)的圖象與性質(zhì);
。3)對(duì)數(shù)函數(shù)的三個(gè)結(jié)論;
。4)對(duì)數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用.
七、課后作業(yè)、鞏固提高
。1)理解對(duì)數(shù)函數(shù)的圖象與性質(zhì);
。2)課本74頁(yè),習(xí)題2.2中7,8;
。3)上網(wǎng)搜集一些運(yùn)用對(duì)數(shù)函數(shù)解決的實(shí)際問(wèn)題,根據(jù)今天學(xué)習(xí)的知識(shí)予以解答.
八、評(píng)價(jià)分析
堅(jiān)持過(guò)程性評(píng)價(jià)和階段性評(píng)價(jià)相結(jié)合的原則。堅(jiān)持激勵(lì)與批評(píng)相結(jié)合的原則.
教學(xué)過(guò)程中,評(píng)價(jià)學(xué)生的情緒、狀態(tài)、積極性、自信心、合作交流的意識(shí)與獨(dú)立思考的能力;
在學(xué)習(xí)互動(dòng)中,評(píng)價(jià)學(xué)生思維發(fā)展的水平;
在解決問(wèn)題練習(xí)和作業(yè)中,評(píng)價(jià)學(xué)生基礎(chǔ)知識(shí)基本技能的掌握.
適時(shí)地組織和指導(dǎo)學(xué)生歸納知識(shí)和技能的一般規(guī)律,有助于學(xué)生更好地學(xué)習(xí)、記憶和應(yīng)用,發(fā)揮知識(shí)系統(tǒng)的整體優(yōu)勢(shì),并為后續(xù)學(xué)習(xí)打好基礎(chǔ)。
課后作業(yè)的設(shè)計(jì)意圖:
一、鞏固學(xué)生本節(jié)課所學(xué)的知識(shí)并落實(shí)教學(xué)目標(biāo);二、讓不同基礎(chǔ)的學(xué)生學(xué)到不同的技能,體現(xiàn)因材施教的原則;
三、使同學(xué)們體會(huì)到科學(xué)的探索永無(wú)止境,為數(shù)學(xué)的學(xué)習(xí)營(yíng)造一種良好的科學(xué)氛圍。
對(duì)數(shù)函數(shù)教案5
3. , (0,+)
【拓展引導(dǎo)】
當(dāng) 時(shí), 的'取值范圍是
當(dāng) 時(shí), 的取值范圍是
【總結(jié)】20xx年數(shù)學(xué)網(wǎng)為小編在此為您收集了此文章高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù),今后還會(huì)發(fā)布更多更好的文章希望對(duì)大家有所幫助,祝您在數(shù)學(xué)網(wǎng)學(xué)習(xí)愉快!
對(duì)數(shù)函數(shù)教案6
教學(xué)目標(biāo):
①掌握對(duì)數(shù)函數(shù)的性質(zhì)。
、趹(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)
合函數(shù)的定義域、值 域及單調(diào)性。
③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想的滲透,提高
解題能力。
教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。
教學(xué)過(guò)程設(shè)計(jì):
⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。
⒉開(kāi)始正課
1 比較數(shù)的大小
例 1 比較下列各組數(shù)的大小。
、舕oga5。1 ,loga5。9 (a>0,a≠1)
⑵log0。50。6 ,logЛ0。5 ,lnЛ
師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?
生:這兩個(gè)對(duì)數(shù)底相等。
師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?
生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。
師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。
生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的'大。寒(dāng)0 調(diào)遞減,所以loga5。1>loga5。9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞 增,所以loga5。1 板書(shū): 解:Ⅰ)當(dāng)0 ∵5。1<5。9 1="">loga5。9 、颍┊(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù), ∵5。1<5。9 ∴l(xiāng)oga5。1 師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征? 生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。 師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小? 生:找“中間量”, log0。50。6>0,lnЛ>0,logЛ0。5<0;lnл>1,log0。50。6<1,所以logЛ0。5< log0。50。6< lnЛ。 板書(shū):略。 師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函 數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù) 函數(shù)圖象的位置關(guān)系來(lái)比大小。 2 函數(shù)的定義域, 值 域及單調(diào)性。 例 2 ⑴求函數(shù)y=的定義域。 ⑵解不等式log0。2(x2+2x-3)>log0。2(3x+3) 師:如何來(lái)求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要 使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式, 被開(kāi)方式大于或等于零;若函數(shù)中有對(duì)數(shù)的形式,則真數(shù)大于 零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求 它們共同作用的結(jié)果。) 生:分母2x-1≠0且偶次根式的被開(kāi)方式log0。8x-1≥0,且真數(shù)x>0。 板書(shū): 解:∵ 2x-1≠0 x≠0。5 log0。8x-1≥0 , x≤0。8 x>0 x>0 ∴x(0,0。5)∪(0。5,0。8〕 師:接下來(lái)我們一起來(lái)解這個(gè)不等式。 分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零, 再根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性求解。 師:請(qǐng)你寫(xiě)一下這道題的解題過(guò)程。 生:<板書(shū)> 解: x2+2x-3>0 x<-3 x="">1 (3x+3)>0 , x>-1 x2+2x-3<(3x+3) -2 不等式的解為:1 ⒊小結(jié) 這堂課主要講解如何應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)解決一些問(wèn)題,希望能通過(guò)這堂課使同學(xué)們對(duì)等價(jià)轉(zhuǎn)化、分類(lèi)討論等思想加以應(yīng)用,提高解題能力。 ⒋作業(yè) 、沤獠坏仁 、賚g(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù)) 、埔阎瘮(shù)y=loga(x2-2x),(a>0,a≠1) 、偾笏膯握{(diào)區(qū)間;②當(dāng)0 、且阎瘮(shù)y=loga (a>0, b>0, 且 a≠1) 、偾笏亩x域;②討論它的奇偶性; 、塾懻撍膯握{(diào)性。 、纫阎瘮(shù)y=loga(ax-1) (a>0,a≠1), 、偾笏亩x域; ②當(dāng)x為何值時(shí),函數(shù)值大于1; ③討論它的單調(diào)性。 1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。 (1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。 。2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的.性質(zhì)解決簡(jiǎn)單的問(wèn)題。 2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹(shù)立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類(lèi)討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。 3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱(chēng)美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。 高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教材分析 (1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類(lèi)重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。 (2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。 。3) 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開(kāi)。而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。 高一數(shù)學(xué)對(duì)數(shù)函數(shù)教案:教法建議 。1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫(huà)對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類(lèi)討論而且對(duì)每一類(lèi)問(wèn)題也可以多選幾個(gè)不同的底,畫(huà)在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。 。2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。 一、說(shuō)教材 1、教材的地位和作用 函數(shù)是高中數(shù)學(xué)的核心,而對(duì)數(shù)函數(shù)是高中階段所要研究的重要的基本初等函數(shù)之一.本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過(guò)指數(shù)函數(shù)、對(duì)數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)在生產(chǎn)、生活實(shí)踐中都有許多應(yīng)用.本節(jié)課的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整、系統(tǒng),為學(xué)生今后進(jìn)一步學(xué)習(xí)對(duì)數(shù)方程、對(duì)數(shù)不等式等提供了必要的基礎(chǔ)知識(shí). 2、教學(xué)目標(biāo)的確定及依據(jù) 根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo): (1) 知識(shí)目標(biāo):理解對(duì)數(shù)函數(shù)的意義;掌握對(duì)數(shù)函數(shù)的.圖像與性質(zhì);初步學(xué)會(huì)用 對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題. (2) 能力目標(biāo):滲透類(lèi)比、數(shù)形結(jié)合、分類(lèi)討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、 分析、歸納等邏輯思維能力. (3) 情感目標(biāo):通過(guò)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)在圖像與性質(zhì)上的對(duì)比,使學(xué)生欣賞數(shù) 學(xué)的精確和美妙之處,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性. 3、教學(xué)重點(diǎn)與難點(diǎn) 重點(diǎn):對(duì)數(shù)函數(shù)的意義、圖像與性質(zhì). 難點(diǎn):對(duì)數(shù)函數(shù)性質(zhì)中對(duì)于在a1與01兩種情況函數(shù)值的不同變化. 二、說(shuō)教法 學(xué)生在整個(gè)教學(xué)過(guò)程中始終是認(rèn)知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,有效地滲透數(shù)學(xué)思想方法.根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),對(duì)于本節(jié)課我主要考慮了以下兩個(gè)方面: 1、教學(xué)方法: (1)啟發(fā)引導(dǎo)學(xué)生實(shí)驗(yàn)、觀察、聯(lián)想、思考、分析、歸納; (2)采用“從特殊到一般”、“從具體到抽象”的方法; (3)滲透類(lèi)比、數(shù)形結(jié)合、分類(lèi)討論等數(shù)學(xué)思想方法. 2、教學(xué)手段: 計(jì)算機(jī)多媒體輔助教學(xué). 三、說(shuō)學(xué)法 “授之以魚(yú),不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身.本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo): (1)類(lèi)比學(xué)習(xí):與指數(shù)函數(shù)類(lèi)比學(xué)習(xí)對(duì)數(shù)函數(shù)的圖像與性質(zhì). (2)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過(guò)思考、分析、操作、探索, 歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì). (3)主動(dòng)合作式學(xué)習(xí):學(xué)生在歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì)時(shí),通過(guò)小組討論, 使問(wèn)題得以圓滿(mǎn)解決. 四、說(shuō)教程 1、溫故知新 我通過(guò)復(fù)習(xí)細(xì)胞分裂問(wèn)題,由指數(shù)函數(shù) 引導(dǎo)學(xué)生逐步得到對(duì)數(shù)函數(shù)的意義及對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系:互為反函數(shù). 設(shè)計(jì)意圖:既復(fù)習(xí)了指數(shù)函數(shù)和反函數(shù)的有關(guān)知識(shí),又與本節(jié)內(nèi)容有密切關(guān)系, 有利于引出新課.為學(xué)生理解新知清除了障礙,有意識(shí)地培養(yǎng)學(xué)生 分析問(wèn)題的能力. 2、探求新知 課題:指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用 課型:綜合課 教學(xué)目標(biāo):在復(fù)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的特性之后,通過(guò)圖像對(duì)比使學(xué)生較快的學(xué)會(huì)不求值比較指數(shù)函數(shù)與對(duì)數(shù)函數(shù)值的大小及提高對(duì)復(fù)合型函數(shù)的定義域與值域的解題技巧。 重點(diǎn):指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的特性。 難點(diǎn):指導(dǎo)學(xué)生如何根據(jù)上述特性解決復(fù)合型函數(shù)的定義域與值域的問(wèn)題。 教學(xué)方法:多媒體授課。 學(xué)法指導(dǎo):借助列表與圖像法。 教具:多媒體教學(xué)設(shè)備。 教學(xué)過(guò)程: 一、 復(fù)習(xí)提問(wèn)。通過(guò)找學(xué)生分別敘述指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的公式及特性,加深學(xué)生的記憶。 二、 展示指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的一覽表。并和學(xué)生們共同復(fù)習(xí)這些性質(zhì)。 指數(shù)函數(shù)與對(duì)數(shù)函數(shù)關(guān)系一覽表 函數(shù) 性質(zhì) 指數(shù)函數(shù) y=ax (a>0且a≠1) 對(duì)數(shù)函數(shù) y=logax(a>0且a≠1) 定義域 實(shí)數(shù)集R 正實(shí)數(shù)集(0,﹢∞) 值域 正實(shí)數(shù)集(0,﹢∞) 實(shí)數(shù)集R 共同的點(diǎn) 。0,1) 。1,0) 單調(diào)性 a>1 增函數(shù) a>1 增函數(shù) 0<a<1 減函數(shù) 0<a<1 減函數(shù) 函數(shù)特性 a>1 當(dāng)x>0,y>1 當(dāng)x>1,y>0 當(dāng)x<0,0<y<1 當(dāng)0<x<1, y<0 0<a<1 當(dāng)x>0, 0<y<1 當(dāng)x>1, y<0 當(dāng)x<0,y>1 當(dāng)0<x<1, y>0 反函數(shù) y=logax(a>0且a≠1) y=ax (a>0且a≠1) 圖像 Y y=(1/2)x y=2x (0,1) X Y y=log2x (1,0) X y=log1/2x 三、 同一坐標(biāo)系中將指數(shù)函數(shù)與對(duì)數(shù)函數(shù)進(jìn)行合成, 觀察其特點(diǎn),并得出y=log2x與y=2x、 y=log1/2x與y=(1/2)x 的圖像關(guān)于直線y=x對(duì)稱(chēng),互為反函數(shù)關(guān)系。所以y=logax與y=ax互為反函數(shù)關(guān)系,且y=logax的定義域與y=ax的值域相同,y=logax的值域與y=ax的定義域相同。 Y y=(1/2)x y=2x y=x 。0,1) y=log2x 。1,0) X y=log1/2x 注意:不能由圖像得到y(tǒng)=2x與y=(1/2)x為偶函數(shù)關(guān)系。因?yàn)榕己瘮?shù)是指同一個(gè)函數(shù)的圖像關(guān)于Y軸對(duì)稱(chēng)。此圖雖有y=2x與y=(1/2)x圖像對(duì)稱(chēng),但它們是2個(gè)不同的函數(shù)。 四、 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)性質(zhì)去解決含有指數(shù)與對(duì)數(shù)的復(fù)合型函數(shù)的定義域、值域問(wèn)題及比較函數(shù)的大小值。 五、 例題 例⒈比較(Л)(-0.1)與(Л)(-0.5)的.大小。 解:∵ y=ax中, a=Л>1 ∴ 此函數(shù)為增函數(shù) 又∵ ﹣0.1>﹣0.5 ∴ (Л)(-0.1)>(Л)(-0.5) 例⒉比較log67與log76的大小。 解: ∵ log67>log66=1 log76<log77=1 ∴ log67>log76 注意:當(dāng)2個(gè)對(duì)數(shù)值不能直接進(jìn)行比較時(shí),可在這2個(gè)對(duì)數(shù)中間插入一個(gè)已知數(shù),間接比較這2個(gè)數(shù)的大小。 例⒊ 求y=3√4-x2的定義域和值域。 解:∵√4-x2 有意義,須使4-x2≥0 即x2≤4, |x|≤2 ∴-2≤x≤2,即定義域?yàn)閇-2,2] 又∵0≤x2≤4, ∴0≤4-x2≤4 ∴0≤√4-x2 ≤2,且y=3x是增函數(shù) ∴30≤y≤32,即值域?yàn)閇1,9] 例⒋ 求函數(shù)y=√log0.25(log0.25x)的定義域。 解:要函數(shù)有意義,須使log0.25(log0.25x)≥0 又∵ 0<0.25<1,∴y=log0.25x是減函數(shù) ∴ 0<log0.25x≤1 ∴ log0.251<log0.25x≤log0.250.25 ∴ 0.25≤x<1,即定義域?yàn)閇0.25,1) 六、 課堂練習(xí) 求下列函數(shù)的定義域 1. y=8[1/(2x-1)] 2. y=loga(1-x)2 (a>0,且a≠1) 七、 評(píng)講練習(xí) 八、 布置作業(yè) 第113頁(yè),第10、11題。并預(yù)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù) 在物理、社會(huì)科學(xué)中的實(shí)際應(yīng)用。 教學(xué)目標(biāo): (一)教學(xué)知識(shí)點(diǎn):1.對(duì)數(shù)函數(shù)的概念;2.對(duì)數(shù)函數(shù)的圖象和性質(zhì). (二)能力訓(xùn)練要求:1.理解對(duì)數(shù)函數(shù)的概念;2.掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì). (三)德育滲透目標(biāo):1.用聯(lián)系的觀點(diǎn)分析問(wèn)題;2.認(rèn)識(shí)事物之間的互相轉(zhuǎn)化. 教學(xué)重點(diǎn): 對(duì)數(shù)函數(shù)的圖象和性質(zhì) 教學(xué)難點(diǎn): 對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系 教學(xué)方法: 聯(lián)想、類(lèi)比、發(fā)現(xiàn)、探索 教學(xué)輔助: 多媒體 教學(xué)過(guò)程: 一、引入對(duì)數(shù)函數(shù)的概念 由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念” 由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的`概念,我們進(jìn)行類(lèi)比,可否猜想有: 問(wèn)題:1.指數(shù)函數(shù)是否存在反函數(shù)? 2.求指數(shù)函數(shù)的反函數(shù). 、伲 ②; 、壑赋龇春瘮(shù)的定義域. 3.結(jié)論 所以函數(shù)與指數(shù)函數(shù)互為反函數(shù). 這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù). 二、講授新課 1.對(duì)數(shù)函數(shù)的定義: 定義域:(0,+∞);值域:(-∞,+∞) 2.對(duì)數(shù)函數(shù)的圖象和性質(zhì): 因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對(duì)稱(chēng). 因此,我們只要畫(huà)出和圖象關(guān)于直線對(duì)稱(chēng)的曲線,就可以得到的圖象. 研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形. 那么我們可以畫(huà)出與圖象關(guān)于直線對(duì)稱(chēng)的曲線得到的圖象. 還可以畫(huà)出與圖象關(guān)于直線對(duì)稱(chēng)的曲線得到的圖象. 請(qǐng)同學(xué)們作出與的草圖,并觀察它們具有一些什么特征? 對(duì)數(shù)函數(shù)的圖象與性質(zhì): 圖象 性質(zhì)(1)定義域: (2)值域: (3)過(guò)定點(diǎn),即當(dāng)時(shí), (4)上的增函數(shù) 。4)上的減函數(shù) 3.圖象的加深理解: 下面我們來(lái)研究這樣幾個(gè)函數(shù):,,,. 我們發(fā)現(xiàn): 與圖象關(guān)于X軸對(duì)稱(chēng);與圖象關(guān)于X軸對(duì)稱(chēng). 一般地,與圖象關(guān)于X軸對(duì)稱(chēng). 再通過(guò)圖象的變化(變化的值),我們發(fā)現(xiàn): 。1)時(shí),函數(shù)為增函數(shù), 。2)時(shí),函數(shù)為減函數(shù), 4.練習(xí): (1)如圖:曲線分別為函數(shù),,,,的圖像,試問(wèn)的大小關(guān)系如何? (2)比較下列各組數(shù)中兩個(gè)值的大小: (3)解關(guān)于x的不等式: 思考:(1)比較大。 (2)解關(guān)于x的不等式: 三、小結(jié) 這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì). 四、課后作業(yè) 課本P85,習(xí)題2.8,1、3 [教學(xué)目標(biāo)] 1、知識(shí)與技能 (1)由前面學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上,根據(jù)函數(shù)的定義引入對(duì)數(shù)函數(shù). 。2)能夠理解指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的關(guān)系,理解反函數(shù)的定義. 。3)會(huì)求指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的反函數(shù). 2、過(guò)程與方法 。1)讓學(xué)生掌握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)之間的關(guān)系. 。2)學(xué)會(huì)問(wèn)題的轉(zhuǎn)化,常規(guī)思維的遷移. 3、情感.態(tài)度與價(jià)值觀 使學(xué)生通過(guò)學(xué)習(xí)對(duì)數(shù)函數(shù),了解指數(shù)函數(shù)與對(duì)數(shù)函數(shù)之間的關(guān)系.在學(xué)習(xí)的過(guò)程中體會(huì)研究函數(shù)要緊扣函數(shù)的定義去理解對(duì)應(yīng)關(guān)系.增強(qiáng)學(xué)習(xí)對(duì)數(shù)函數(shù)的積極性和自信心. [教學(xué)重點(diǎn)]:對(duì)數(shù)函數(shù)的定義的理解以及對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系. [教學(xué)難點(diǎn)]:對(duì)數(shù)函數(shù)與支書(shū)函數(shù)之間的關(guān)系. [課時(shí)安排]:1課時(shí) [學(xué)法指導(dǎo)]:學(xué)生思考、探究. [講授過(guò)程] 【新課導(dǎo)入】 [互動(dòng)過(guò)程1] 復(fù)習(xí):1.對(duì)數(shù)是怎么定義的?對(duì)數(shù)與指數(shù)之間的關(guān)系是什么?什么是函數(shù)?什么是指數(shù)函數(shù)? 2.指數(shù)函數(shù)的圖像和性質(zhì)是什么? [互動(dòng)過(guò)程1] 在正整數(shù)指數(shù)函數(shù)中,我們討論了細(xì)胞分裂的個(gè)數(shù)y與分裂次數(shù)x之間的函數(shù)關(guān)系,這個(gè)函數(shù)可以表示為指數(shù)函數(shù),而在指數(shù)函數(shù)中,我們又把正整數(shù)指數(shù)函數(shù)推廣到實(shí)數(shù)指數(shù)函數(shù),這樣已知分裂的次數(shù)我們就可以知道細(xì)胞分裂的個(gè)數(shù),反過(guò)來(lái),如果我們知道分裂細(xì)胞的個(gè)數(shù),我們同樣可以知道細(xì)胞分裂的次數(shù),如:求一個(gè)這樣的細(xì)胞經(jīng)過(guò)多少次分裂,大約可以得到1萬(wàn)個(gè)細(xì)胞,或10萬(wàn)個(gè)細(xì)胞.這樣就可以得到分裂次數(shù)與細(xì)胞分裂的個(gè)數(shù)之間的函數(shù)關(guān)系,那么怎么表示呢?也就是從中,用表示出的'值.我們學(xué)習(xí)了對(duì)數(shù),就可以把這個(gè)函數(shù)寫(xiě)成對(duì)數(shù)的形式就是. [互動(dòng)過(guò)程2] 思考:對(duì)于一般的函數(shù)中的兩個(gè)變量,能不能把y當(dāng)作自變量,使得x是y的函數(shù)呢?請(qǐng)作出解釋?zhuān)?/p> 思考分析:指數(shù)函數(shù),對(duì)于的每一個(gè)確定的值,都有唯一的值和它對(duì)應(yīng);并且當(dāng)時(shí),也就是說(shuō)指數(shù)函數(shù)反映了數(shù)集R與數(shù)集之間的一一對(duì)應(yīng)關(guān)系,可見(jiàn),對(duì)于任意的,在R中都有唯一的數(shù)滿(mǎn)足. 如果把當(dāng)作自變量,那么就是的函數(shù),而且這個(gè)函數(shù)就是,函數(shù)叫作對(duì)數(shù)函數(shù),這里,自變量. [互動(dòng)過(guò)程3] 同學(xué)們想一想這種寫(xiě)法與我們?cè)瓉?lái)見(jiàn)過(guò)的函數(shù)一樣嗎?怎么不一樣? 對(duì)數(shù)函數(shù)及其性質(zhì)教學(xué)設(shè)計(jì) 1.教學(xué)方法 建構(gòu)主義學(xué)習(xí)觀,強(qiáng)調(diào)以學(xué)生為中心,學(xué)生在教師指導(dǎo)下對(duì)知識(shí)的主動(dòng)建構(gòu)。它既強(qiáng)調(diào)學(xué)習(xí)者的認(rèn)知主體作用,又不忽視教師的指導(dǎo)作用。 高中一年級(jí)的學(xué)生正值身心發(fā)展的過(guò)渡時(shí)期,思維活躍,具有一定的獨(dú)立性,喜歡新鮮事物,敢于大膽發(fā)表自己的見(jiàn)解,不過(guò)思維還不是很成熟. 在目標(biāo)分析的基礎(chǔ)上,根據(jù)建構(gòu)主義學(xué)習(xí)觀,及學(xué)生的認(rèn)知特點(diǎn),我擬采用“探究式”教學(xué)方法。將一節(jié)課的核心內(nèi)容通過(guò)四個(gè)活動(dòng)的形式引導(dǎo)學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu)。其理論依據(jù)為建構(gòu)主義學(xué)習(xí)理論。它很好地體現(xiàn)了“學(xué)生為主體,教師為主導(dǎo),問(wèn)題為主線,思維為主攻”的“四為主”的教學(xué)思想。 2.學(xué)法指導(dǎo) 新課程強(qiáng)調(diào)“以學(xué)生發(fā)展為核心”,強(qiáng)調(diào)培養(yǎng)學(xué)生的自主探索能力與合作學(xué)習(xí)能力。因此本節(jié)課學(xué)生將在教師的啟發(fā)誘導(dǎo)下對(duì)教師提供的素材經(jīng)歷創(chuàng)設(shè)情境→獲得新知→作圖察質(zhì)→問(wèn)題探究→歸納性質(zhì)→學(xué)以致用→趁熱打鐵→畫(huà)龍點(diǎn)睛→自我提升的過(guò)程,這一過(guò)程將激發(fā)學(xué)生積極參與到教學(xué)活動(dòng)中來(lái)。 3.教學(xué)手段 本節(jié)課我選擇計(jì)算機(jī)輔助教學(xué)。增大課堂容量,提高課堂效率;激發(fā)學(xué)生的學(xué)習(xí)興趣,展示運(yùn)動(dòng)變化過(guò)程,使信息技術(shù)真正為教學(xué)服務(wù). 4.教學(xué)流程 四、教學(xué)過(guò)程 教學(xué)過(guò)程 設(shè)計(jì)意圖 一、創(chuàng)設(shè)情境,導(dǎo)入新課 活動(dòng)1:(1)同學(xué)們有沒(méi)有看過(guò)《冰河世紀(jì)》這個(gè)電影?先播放視頻,引入課題。 。2)考古學(xué)家經(jīng)過(guò)長(zhǎng)期實(shí)踐,發(fā)現(xiàn)凍土層內(nèi)某微量元素的含量P與年份t的關(guān)系:,這是一個(gè)指數(shù)式,由指數(shù)與對(duì)數(shù)的關(guān)系,此指數(shù)式可改寫(xiě)為對(duì)數(shù)式。 。3)考古學(xué)家提取了凍土層內(nèi)微量元素,確定它的殘余量約占原始含量的1%,即P=0.01,代入對(duì)數(shù)式,可知 。4)由表格中的數(shù)據(jù): 碳14的含量P 0.5 0.3 0.1 0.01 0.001 生物死亡年數(shù)t 5730 9953 19035 39069 57104 可讀出精確年份為39069,當(dāng)P值為0.001時(shí),t大約為57104年,所以每一個(gè)P值都與一個(gè)t值相對(duì)應(yīng),是一一對(duì)應(yīng)關(guān)系,所以p與t之間是函數(shù)關(guān)系。 (5)數(shù)學(xué)知識(shí)不但可以解決猛犸象的封存時(shí)間,也可以與其他學(xué)科的知識(shí)相結(jié)合來(lái)解決視頻中的遺留問(wèn)題,就是不知道咱們中國(guó)的猛犸象克隆問(wèn)題會(huì)由班里的哪位同學(xué)解決,我們拭目以待。 (6)把函數(shù)模型一般化,可給出對(duì)數(shù)函數(shù)的概念。 通過(guò)這個(gè)實(shí)例激發(fā)學(xué)生學(xué)習(xí)的興趣,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)來(lái)源于實(shí)踐,并為實(shí)踐服務(wù)。 和學(xué)生一起分析處理問(wèn)題,體會(huì)函數(shù)關(guān)系,并體現(xiàn)學(xué)生的主體地位。 二、形成概念、獲得新知 定義:一般地,我們把函數(shù) 叫做對(duì)數(shù)函數(shù)。其中x是自變量,定義域?yàn)?/p> 例1求下列函數(shù)的定義域: 。1);(2). 解:(1)函數(shù)的定義域是。 (2)函數(shù)的`定義域是。 歸納:形如的的函數(shù)的定義域要考慮— 三、探究歸納、總結(jié)性質(zhì) 活動(dòng)1:小組合作,每個(gè)組內(nèi)分別利用描點(diǎn)法畫(huà)和的圖象,組長(zhǎng)合理分工,看哪個(gè)小組完成的最好。 選取完成最好、最快的小組,由組長(zhǎng)在班內(nèi)展示。 活動(dòng)2:小組討論,對(duì)任意的a值,對(duì)數(shù)函數(shù)圖象怎么畫(huà)? 教師帶領(lǐng)學(xué)生一起舉手,共同畫(huà)圖。 活動(dòng)3:對(duì)a>1時(shí),觀察圖象,你能發(fā)現(xiàn)圖象有哪些圖形特征嗎? 然后由學(xué)生討論完成下表左邊: 函數(shù)的圖象特征 函數(shù)的性質(zhì) 圖象都位于y軸的右方 定義域是 圖象向上向下無(wú)限延展 值域是R 圖象都經(jīng)過(guò)點(diǎn)(1,0) 當(dāng)x=1時(shí),總有y=0 當(dāng)a>1時(shí),圖象逐漸上升; 當(dāng)0當(dāng)a>1時(shí),是增函數(shù) 當(dāng)0通過(guò)對(duì)定義的進(jìn)一步理解,培養(yǎng)學(xué)生思維的嚴(yán)密性和批判性。 通過(guò)作出具體函數(shù)圖象,讓學(xué)生體會(huì)由特殊到一般的研究方法。 學(xué)生可類(lèi)比指數(shù)函數(shù)的研究過(guò)程,獨(dú)立研究對(duì)數(shù)函數(shù)性質(zhì),從而培養(yǎng)學(xué)生探究歸納、分析問(wèn)題、解決問(wèn)題的能力。 師生一起完成表格右邊,對(duì)0<a<1時(shí),找兩位同學(xué)一問(wèn)一答共同完成,再次體現(xiàn)數(shù)形結(jié)合。 四、探究延伸 。1)探討對(duì)數(shù)函數(shù)中的符號(hào)規(guī)律. 。2)探究底數(shù)分別為與的對(duì)數(shù)函數(shù)圖像的關(guān)系. 。3)在第一象限中,探究底數(shù)分別為的對(duì)數(shù)函數(shù)圖象與底數(shù)a的關(guān)系. 五、分析例題、鞏固新知 例2比較下列各組數(shù)中兩個(gè)值的大。 (1),; 。2),; (3),。 解: 。1)在上是增函數(shù), 且3.4<8.5, (2)在上是減函數(shù), 且3.4<8.5,. (3)注:底數(shù)非常數(shù),要分類(lèi)討論的范圍. 當(dāng)a>1時(shí),在上是增函數(shù), 且3.4<8.5,; 當(dāng)0且3.4<8.5, 練習(xí)1:比較下列兩個(gè)數(shù)的大。 練習(xí)2:比較下列兩個(gè)數(shù)的大。 。ㄕ覍W(xué)生上黑板講解練習(xí)2的第一題,強(qiáng)調(diào)多種做法,一起完成第二小題.) 考察學(xué)生對(duì)對(duì)數(shù)函數(shù)圖像的理解與掌握,進(jìn)一步強(qiáng)調(diào)數(shù)形結(jié)合。 通過(guò)運(yùn)用對(duì)數(shù)函數(shù)的單調(diào)性“比較兩數(shù)的大小”培養(yǎng)學(xué)生運(yùn)用函數(shù)的觀點(diǎn)解決問(wèn)題,逐步向?qū)W生滲透函數(shù)的思想,分類(lèi)討論的思想,提高學(xué)生的發(fā)散思維能力。 六、對(duì)比總結(jié)、深化認(rèn)識(shí) 先總結(jié)本節(jié)課所學(xué)內(nèi)容,由學(xué)生總結(jié),教師補(bǔ)充,強(qiáng)調(diào)哪些是重要內(nèi)容 。1)對(duì)數(shù)函數(shù)的定義; (2)對(duì)數(shù)函數(shù)的圖象與性質(zhì); (3)對(duì)數(shù)函數(shù)的三個(gè)結(jié)論; 。4)對(duì)數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用. 七、課后作業(yè)、鞏固提高 。1)理解對(duì)數(shù)函數(shù)的圖象與性質(zhì); 。2)課本74頁(yè),習(xí)題2.2中7,8; 。3)上網(wǎng)搜集一些運(yùn)用對(duì)數(shù)函數(shù)解決的實(shí)際問(wèn)題,根據(jù)今天學(xué)習(xí)的知識(shí)予以解答. 八、評(píng)價(jià)分析 堅(jiān)持過(guò)程性評(píng)價(jià)和階段性評(píng)價(jià)相結(jié)合的原則。堅(jiān)持激勵(lì)與批評(píng)相結(jié)合的原則. 教學(xué)過(guò)程中,評(píng)價(jià)學(xué)生的情緒、狀態(tài)、積極性、自信心、合作交流的意識(shí)與獨(dú)立思考的能力; 在學(xué)習(xí)互動(dòng)中,評(píng)價(jià)學(xué)生思維發(fā)展的水平; 在解決問(wèn)題練習(xí)和作業(yè)中,評(píng)價(jià)學(xué)生基礎(chǔ)知識(shí)基本技能的掌握. 適時(shí)地組織和指導(dǎo)學(xué)生歸納知識(shí)和技能的一般規(guī)律,有助于學(xué)生更好地學(xué)習(xí)、記憶和應(yīng)用,發(fā)揮知識(shí)系統(tǒng)的整體優(yōu)勢(shì),并為后續(xù)學(xué)習(xí)打好基礎(chǔ)。 課后作業(yè)的設(shè)計(jì)意圖: 一、鞏固學(xué)生本節(jié)課所學(xué)的知識(shí)并落實(shí)教學(xué)目標(biāo);二、讓不同基礎(chǔ)的學(xué)生學(xué)到不同的技能,體現(xiàn)因材施教的原則; 三、使同學(xué)們體會(huì)到科學(xué)的探索永無(wú)止境,為數(shù)學(xué)的學(xué)習(xí)營(yíng)造一種良好的科學(xué)氛圍。 教學(xué)目標(biāo): (一)教學(xué)知識(shí)點(diǎn): 1、對(duì)數(shù)函數(shù)的概念; 2、對(duì)數(shù)函數(shù)的圖象和性質(zhì)、 (二)能力訓(xùn)練要求: 1、理解對(duì)數(shù)函數(shù)的概念; 2、掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì) (三)德育滲透目標(biāo): 1、用聯(lián)系的觀點(diǎn)分析問(wèn)題; 2、認(rèn)識(shí)事物之間的互相轉(zhuǎn)化 教學(xué)重點(diǎn): 對(duì)數(shù)函數(shù)的圖象和性質(zhì) 教學(xué)難點(diǎn): 對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系 教學(xué)方法: 聯(lián)想、類(lèi)比、發(fā)現(xiàn)、探索 教學(xué)輔助: 多媒體 教學(xué)過(guò)程: 一、引入對(duì)數(shù)函數(shù)的概念 由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念” 由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類(lèi)比,可否猜想有: 問(wèn)題: 1、指數(shù)函數(shù)是否存在反函數(shù)? 2、求指數(shù)函數(shù)的反函數(shù) 、;指出反函數(shù)的定義域。 3、結(jié)論 所以函數(shù)與指數(shù)函數(shù)互為反函數(shù)。 這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù)。 二、講授新課 1、對(duì)數(shù)函數(shù)的定義: 定義域:(0,+∞);值域:(-∞,+∞) 2、對(duì)數(shù)函數(shù)的圖象和性質(zhì): 1、因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)。所以與圖象關(guān)于直線對(duì)稱(chēng)。 2、因此,我們只要畫(huà)出和圖象關(guān)于直線對(duì)稱(chēng)的曲線,就可以得到的圖象。 3、研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形。 4、那么我們可以畫(huà)出與圖象關(guān)于直線對(duì)稱(chēng)的曲線得到的圖象。 5、還可以畫(huà)出與圖象關(guān)于直線對(duì)稱(chēng)的曲線得到的圖象。 6、請(qǐng)同學(xué)們作出與的`草圖,并觀察它們具有一些什么特征? 對(duì)數(shù)函數(shù)的圖象與性質(zhì): 圖象 性質(zhì) (1)定義域: 。2)值域: 。3)過(guò)定點(diǎn),即當(dāng)時(shí) (4)上的增函數(shù) 。4)上的減函數(shù) 3、圖象的加深理解: 下面我們來(lái)研究這樣幾個(gè)函數(shù): 我們發(fā)現(xiàn): 與圖象關(guān)于X軸對(duì)稱(chēng);與圖象關(guān)于X軸對(duì)稱(chēng)。 一般地,與圖象關(guān)于X軸對(duì)稱(chēng)。 再通過(guò)圖象的變化(變化的值) 我們發(fā)現(xiàn): 。1)時(shí),函數(shù)為增函數(shù) 。2)時(shí),函數(shù)為減函數(shù) 4、練習(xí): (1)如圖:曲線分別為函數(shù)的圖像,試問(wèn)的大小關(guān)系如何? (2)比較下列各組數(shù)中兩個(gè)值的大。 (3)解關(guān)于x的不等式: 思考:(1)比較大小: (2)解關(guān)于x的不等式: 三、小結(jié) 這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù)。并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì)。 四、課后作業(yè) 課本P85,習(xí)題2、8、1、3 教學(xué)目標(biāo) 1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖像,掌握對(duì)數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡(jiǎn)單問(wèn)題. 2. 通過(guò)對(duì)數(shù)函數(shù)的學(xué)習(xí),樹(shù)立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類(lèi)討論的思想. 3. 通過(guò)對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性. 教學(xué)重點(diǎn),難點(diǎn) 重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握?qǐng)D像和性質(zhì). 難點(diǎn)是由對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對(duì)數(shù)函數(shù)的圖像和性質(zhì). 教學(xué)方法 啟發(fā)研討式 教學(xué)用具 投影儀 教學(xué)過(guò)程 一. 引入新課 今天我們一起再來(lái)研究一種常見(jiàn)函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù). 反函數(shù)的實(shí)質(zhì)是研究?jī)蓚(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù). 提問(wèn):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎? 由學(xué)生說(shuō)出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個(gè)學(xué)生口答求反函數(shù)的過(guò)程: 由 得 .又 的值域?yàn)?, 所求反函數(shù)為 . 那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù). 二.對(duì)數(shù)函數(shù)的圖像與性質(zhì) (板書(shū)) 1. 作圖方法 提問(wèn)學(xué)生打算用什么方法來(lái)畫(huà)函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫(huà)圖.同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫(huà)圖. 由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類(lèi)型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫(huà)圖. 具體操作時(shí),要求學(xué)生做到: (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等). (2) 畫(huà)出直線 . (3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱(chēng)點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱(chēng)為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分. 學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫(huà)出和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫(huà)在同一坐標(biāo)系內(nèi))如圖: 2. 草圖. 教師畫(huà)完圖后再利用投影儀將 和 的圖像畫(huà)在同一坐標(biāo)系內(nèi),如圖: 然后提出讓學(xué)生根據(jù)圖像說(shuō)出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說(shuō)明) 3. 性質(zhì) (1) 定義域: (2) 值域: 由以上兩條可說(shuō)明圖像位于 軸的右側(cè). (3) 截距:令 得 ,即在 軸上的.截距為1,與 軸無(wú)交點(diǎn)即以 軸為漸近線. (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱(chēng),也不關(guān)于 軸對(duì)稱(chēng). (5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的 當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的. 之后可以追問(wèn)學(xué)生有沒(méi)有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問(wèn)能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況: 當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 . 學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書(shū)記下來(lái). 最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性) 對(duì)圖像和性質(zhì)有了一定的了解后,一起來(lái)看看它們的應(yīng)用. 三.鞏固練習(xí) 練習(xí):若 ,求 的取值范圍. 四.小結(jié) 五.作業(yè) 略 內(nèi)容與解析 。ㄒ唬﹥(nèi)容:對(duì)數(shù)函數(shù)及其性質(zhì) 。ǘ┙馕觯簭慕鼛啄旮呖荚囶}看,主要考查對(duì)數(shù)函數(shù)的性質(zhì),一般綜合在對(duì)數(shù)函數(shù)中考查。題型主要是選擇題和填空題,命題靈活。學(xué)習(xí)本部分時(shí),要重點(diǎn)掌握對(duì)數(shù)的運(yùn)算性質(zhì)和技巧,并熟練應(yīng)用。 一、目標(biāo)及其解析: (一)教學(xué)目標(biāo) 。1)了解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡(jiǎn)單應(yīng)用。進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì); 。2)學(xué)習(xí)反函數(shù)的概念,理解對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標(biāo)上看出互為反函數(shù)的兩個(gè)函數(shù)的圖象性質(zhì)。。 。ǘ┙馕 (1)在對(duì)數(shù)函數(shù)中,底數(shù)且,自變量,函數(shù)值。作為對(duì)數(shù)函數(shù)的三個(gè)要點(diǎn),要做到道理明白、記憶牢固、運(yùn)用準(zhǔn)確。 。2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域。②把原函數(shù)y=f(x)視為方程,用y表示出x。③把x、y互換,同時(shí)標(biāo)明反函數(shù)的定義域。 二、問(wèn)題診斷分析 在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關(guān)系是學(xué)好對(duì)數(shù)函數(shù)與反函數(shù)的基礎(chǔ)。 三、教學(xué)支持條件分析 在本節(jié)課一次遞推的教學(xué)中,準(zhǔn)備使用PowerPoint 20xx。因?yàn)槭褂肞owerPoint 20xx,有利于提供準(zhǔn)確、最核心的文字信息,有利于幫助學(xué)生順利抓住老師上課思路,節(jié)省老師板書(shū)時(shí)間,讓學(xué)生盡快地進(jìn)入對(duì)問(wèn)題的.分析當(dāng)中。 四、教學(xué)過(guò)程 問(wèn)題一。對(duì)數(shù)函數(shù)模型思想及應(yīng)用: 、俪鍪纠}:溶液酸堿度的測(cè)量問(wèn)題:溶液酸堿度pH的計(jì)算公式,其中表示溶液中氫離子的濃度,單位是摩爾/升。 。á瘢┓治鋈芤核釅A讀與溶液中氫離子濃度之間的關(guān)系? 。á颍┘儍羲/升,計(jì)算純凈水的酸堿度。 ②討論:抽象出的函數(shù)模型?如何應(yīng)用函數(shù)模型解決問(wèn)題?強(qiáng)調(diào)數(shù)學(xué)應(yīng)用思想 問(wèn)題二。反函數(shù): ①引言:當(dāng)一個(gè)函數(shù)是一一映射時(shí),可以把這個(gè)函數(shù)的因變量作為一個(gè)新函數(shù)的自變量,而把這個(gè)函數(shù)的自變量新的函數(shù)的因變量。我們稱(chēng)這兩個(gè)函數(shù)為反函數(shù)(inverse function) ②探究:如何由求出x? 、鄯治觯汉瘮(shù)由解出,是把指數(shù)函數(shù)中的自變量與因變量對(duì)調(diào)位置而得出的習(xí)慣上我們通常用x表示自變量,y表示函數(shù),即寫(xiě)為。 那么我們就說(shuō)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù) 、茉谕黄矫嬷苯亲鴺(biāo)系中,畫(huà)出指數(shù)函數(shù)及其反函數(shù)圖象,發(fā)現(xiàn)什么性質(zhì)? 、莘治觯喝D象上的幾個(gè)點(diǎn),說(shuō)出它們關(guān)于直線的對(duì)稱(chēng)點(diǎn)的坐標(biāo),并判斷它們是否在的圖象上,為什么? 、尢骄浚喝绻诤瘮(shù)的圖象上,那么P0關(guān)于直線的對(duì)稱(chēng)點(diǎn)在函數(shù)的圖象上嗎,為什么? 由上述過(guò)程可以得到什么結(jié)論?(互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于直線對(duì)稱(chēng)) 、呔毩(xí):求下列函數(shù)的反函數(shù):; 。◣熒簿毿〗Y(jié)步驟:解x;習(xí)慣表示;定義域) (二)小結(jié):函數(shù)模型應(yīng)用思想;反函數(shù)概念;閱讀P84材料 五、目標(biāo)檢測(cè) 1(20xx全國(guó)卷Ⅱ文)函數(shù)y=(x 0)的反函數(shù)是 1B解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯(cuò),原函數(shù)y 0可知D錯(cuò),選B。 2(20xx廣東卷理)若函數(shù)是函數(shù)的反函數(shù),其圖像經(jīng)過(guò)點(diǎn),則() 2 B解析:,代入,解得,所以,選B。 3求函數(shù)的反函數(shù) 3解析:顯然y0,反解可得,將x,y互換可得?傻迷瘮(shù)的反函數(shù)為。 【對(duì)數(shù)函數(shù)教案】相關(guān)文章: 高中教案教案03-05 關(guān)于教案模板 教案模板教案10-20 小班教案《小熊》教案11-19 (實(shí)用)高中教案教案01-21 高中教案教案經(jīng)典2篇01-21 中班教案:春風(fēng)教案及反思11-24 絕句教案 杜甫《絕句》教案11-29 大班教案生活中的花紋教案06-06對(duì)數(shù)函數(shù)教案7
對(duì)數(shù)函數(shù)教案8
對(duì)數(shù)函數(shù)教案9
對(duì)數(shù)函數(shù)教案10
對(duì)數(shù)函數(shù)教案11
對(duì)數(shù)函數(shù)教案12
對(duì)數(shù)函數(shù)教案13
對(duì)數(shù)函數(shù)教案14
對(duì)數(shù)函數(shù)教案15