- 相關(guān)推薦
七年級上冊數(shù)學(xué)整式教案
作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫教案,教案是教學(xué)活動的依據(jù),有著重要的地位。優(yōu)秀的教案都具備一些什么特點呢?以下是小編為大家收集的七年級上冊數(shù)學(xué)整式教案,僅供參考,大家一起來看看吧。

七年級上冊數(shù)學(xué)整式教案1
一、三維目標(biāo)。
(一)知識與技能。
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡。
。ǘ┻^程與方法。
經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力。
。ㄈ┣楦袘B(tài)度與價值觀。
培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度。
二、教學(xué)重、難點與關(guān)鍵。
1、重點:去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡。
2、難點:括號前面是—號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤。
3、關(guān)鍵:準(zhǔn)確理解去括號法則。
三、教具準(zhǔn)備。
投影儀。
四、教學(xué)過程,課堂引入。
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
五、新授。
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的'時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①
凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②
上面的式子①、②都帶有括號,它們應(yīng)如何化簡?
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60
七年級上冊數(shù)學(xué)整式教案2
1.進一步理解字母表示數(shù)的意義,會用含字母的式子表示實際問題中的數(shù)量關(guān)系.
2.經(jīng)歷用含有字母的式子表示實際問題數(shù)量關(guān)系的過程,體會從具體到抽象的認(rèn)識過程,發(fā)展符號意識.
進一步理解字母表示數(shù)的意義,會用含字母的式子表示實際問題中的數(shù)量關(guān)系.
分析題目中的數(shù)量關(guān)系,用式子表示數(shù)量關(guān)系.
(設(shè)計者: )
一、創(chuàng)設(shè)情境 明確目標(biāo)
青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段.列車在凍土地段的行駛速度是100 km/h,列車在凍土地段的行駛時,根據(jù)已知數(shù)據(jù)求出列車行駛的路程.
(1)2 h行駛的路程是多少?3 h呢?t h呢?
(2)字母t表示時間有什么意義?如果用v表示速度,列車行駛的路程是多少?
(3)回顧以前所學(xué)的知識,你還能舉出用字母表示數(shù)或數(shù)量關(guān)系的例子嗎?
二、自主學(xué)習(xí) 指向目標(biāo)
自學(xué)教材第54至55頁,完成下列問題:
1.假設(shè)列車的行駛速度是100 km/h,根據(jù)路程、速度、時間之間的關(guān)系:路程=速度×?xí)r間,請寫出:
(1)列車2 h行駛的路程為__200__km.
(2)列車3 h行駛的路程為__300__km.
(3)列車t h行駛的路程為__100t__km.
2.在含有字母的式子中如果出現(xiàn)乘號,通常將乘號寫作__·__或__省略不寫__.
三、合作探究 達成目標(biāo)
用字母表示數(shù)
活動一:(1)蘋果原價是每千克p元,按8折優(yōu)惠出售,用式子表示現(xiàn)價;
(2)某產(chǎn)品前年的產(chǎn)量是n件,去年的產(chǎn)量是前年產(chǎn)量的m倍,用式子表示去年的產(chǎn)量;
(3)一個長方體包裝盒的長和寬都是a cm,高是h cm,用式子表示它的體積;
(4)用式子表示數(shù)n的相反數(shù).
【展示點評】解答過程見教材第54頁例1的解.含有字母的式子中如果出現(xiàn)乘號,寫成“·”或省略不寫.如第(3)小題,就不能寫成a2·h.
【小組討論】用字母表示數(shù)有什么意義?
【反思小結(jié)】字母可以表示任意的數(shù),也可以表示特定意義的公式,還可以表示符合條件的某一個數(shù),甚至可以表示具有某些規(guī)律的數(shù),總之字母可以簡明的將數(shù)量關(guān)系表示出來.
【針對訓(xùn)練】見“學(xué)生用書”.
用字母表示簡單的數(shù)量關(guān)系
活動二:閱讀教科書例2中的四個問題,思考:
順?biāo)旭倳r,船的速度=________+________;
逆水行駛時,船的速度=________-________.
解答過程見教材第55頁例2的解答過程.
【展示點評】列式表示關(guān)系時,一定要搞清“和”、“差”、“積”、“倍”等關(guān)系.
【小組討論】用含有字母的式子表示數(shù)量關(guān)系時,關(guān)鍵是什么?應(yīng)注意什么問題?
【反思小結(jié)】用含有字母的式子表示數(shù)量關(guān)系時,關(guān)鍵是找準(zhǔn)題目中的數(shù)量關(guān)系.
注意:1.用字母表示數(shù)時,數(shù)字與字母,字母與字母相乘,中間的乘號可以省略不寫或用“·”表示;
2.字母和數(shù)字相乘時,省略乘號,并把數(shù)字放到字母前;
3.出現(xiàn)除式時,用分?jǐn)?shù)的形式表示;
4.結(jié)果含加減運算的,需要帶單位時,式子要用“()”;
5.系數(shù)是帶分?jǐn)?shù)時,帶分?jǐn)?shù)要化成假分?jǐn)?shù).
【針對訓(xùn)練】見“學(xué)生用書”.
四、總結(jié)梳理 內(nèi)化目標(biāo)
1.用字母表示數(shù)的意義.
2.用含有字母的式子表示數(shù)量關(guān)系的意義.
3.用含有字母的.式子表示數(shù)量關(guān)系時要注意的問題.
實際問題―→用字母表示數(shù)―→用字母表示數(shù)量關(guān)系
《2.1整式》同步練習(xí)含答案
1. 其中長方形的長為a,寬為b.
(1)陰影部分的面積是多少?
(2)你能判斷它是單項式或多項式嗎?它的次數(shù)是多少?
《2.1整式》課后練習(xí)含答案
知識要點
1.單項式:只含有數(shù)和字母的乘積的代數(shù)式叫做單項式.單獨的一個數(shù)或一個字母也是單項式.它的本質(zhì)特征在于:
(1)不含加減運算;
(2)可以含乘、除、乘方運算,但分母中不能含有字母.
2.單項式的次數(shù)、系數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù).單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù).
3.多項式:幾個單項式的和叫做多項式.多項式中,每個單項式叫做多項式的項,其中不含字母的項叫常數(shù)項.一個多項式中,次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù).
4.整式:單項和多項式統(tǒng)稱整式.
七年級上冊數(shù)學(xué)整式教案3
一、教學(xué)目標(biāo)
知識與技能
1.理解單項式及單項式系數(shù)、次數(shù)的概念。
2.會準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù)。
過程與方法
通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流能力。
情感態(tài)度與價值觀
初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。
二、重點難點
重點
列單項式表示數(shù)量關(guān)系,單項式及其系數(shù)、次數(shù)的意義.
難點
列單項式表示數(shù)量關(guān)系.
三、學(xué)情分析
本節(jié)課是研究整式的起始課,它是進一步學(xué)習(xí)多項式的基礎(chǔ),因此對單項式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。要注重分析,亦即在剖析單項式結(jié)構(gòu)時,借助反例練習(xí),抓住概念易混淆處和判斷易出錯處,強化認(rèn)識,幫助學(xué)生理解單項式系數(shù)、次數(shù),為進一步學(xué)習(xí)新知做好鋪墊。
四、教學(xué)過程設(shè)計
問題設(shè)計師生活動設(shè)計意圖
[活動1]
舉世矚目的青藏鐵路于20xx年7月1日建成通車,實現(xiàn)了幾代中國人夢寐以求的愿望。青藏鐵路是世界上海拔最高、線路最長的高原鐵路。青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的.行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答問題:
列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
提問:字母表示數(shù)有什么意義?
學(xué)生獨立思考,嘗試解決
解答:
1002=200千米
1003=300千米
100t=100t千米
我們用含字母t的式子100t表示路程。用字母表示數(shù)后,可以用含有字母的式子把數(shù)量關(guān)系簡明地表達出來,更適合一般規(guī)律的表達。
從學(xué)生已有的數(shù)學(xué)經(jīng)驗和現(xiàn)實問題情境出發(fā),感受用字母表示數(shù)的意義。
以青藏鐵路為引例,對學(xué)生進行愛國主義教育的德育滲透。
七年級上冊數(shù)學(xué)整式教案4
教學(xué)目標(biāo)
1、使學(xué)生理解單項式及單項系數(shù)、次數(shù)的概念,并會找出單項式的系數(shù)、次數(shù)、
2、初步培養(yǎng)學(xué)生的觀察分析和歸納概括的能力,使學(xué)生初步認(rèn)識特殊與一般的辯證關(guān)系、
重點
掌握單項式及單項式系數(shù)、次數(shù)的概念,并會找出單項式的系數(shù)、次數(shù)、
難點
識別單項式的系數(shù)和次數(shù)、
教學(xué)過程
一、創(chuàng)設(shè)情境,導(dǎo)入新課
師:出示圖片、
青藏鐵路線上,在格爾木到拉薩之間有段很長的凍土地段,列車在凍土地段的`行駛速度是100千米/小時,在非凍土地段的行駛速度可以達到120千米/小時,請根據(jù)這些數(shù)據(jù)回答:
(1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?利用怎樣的一個等量關(guān)系來解決?
。2)t小時呢?
二、推進新課
。ㄒ唬┯煤帜傅氖阶颖硎緮(shù)量關(guān)系、
師:出示第54頁例1、
生:解答例1后,討論問題,用字母表示數(shù)有什么意義?
學(xué)生經(jīng)過討論得出一定的答案,但可能不會太規(guī)范,教師總結(jié)、
師:用字母表示數(shù),在具有某些共性的問題上具有更廣泛的意義,在形式上更簡單,使用上更方便(可考慮補充:像這樣的用運算符號把數(shù)或字母連接起來的式子叫做代數(shù)式、一個數(shù)或表示數(shù)的字母也是代數(shù)式)、
師生共同完成例2,進一步體會用字母表示數(shù)的意義、
鞏固練習(xí):第56頁練習(xí)、
。ǘ﹩雾検降母拍睢
師:出示問題、
引言與例1中的式子100t,0.8p,mn,a2h,—n這些式子有什么特點?
生:通過觀察、對比、討論得出,各式都是數(shù)或字母的積、
師:指出單項式的概念,特別地,單獨的一個數(shù)或字母也是單項式、
鞏固練習(xí):下列各式是單項式的式子是____________、
《整式的加減》同步練習(xí)
1、代數(shù)式a2+a+3的值為8,則代數(shù)式2a2+2a﹣3的值為?
2、甲、乙二人一起加工零件、甲平均每小時加工a個零件,加工2小時;乙平均每小時加工b個零件,加工3小時、甲、乙二人共加工零件___個。
《整式的加減》單元測試卷含答案
9、已知a是一位數(shù),b是兩位數(shù),將a放在b的左邊,所得的三位數(shù)是()
A、ab B、a+b C、10a+b D、100a+b
【考點】列代數(shù)式、
【分析】a放在左邊,則a在百位上,據(jù)此即可表示出這個三位數(shù)、
【解答】解:a放在左邊,則a在百位上,因而所得的數(shù)是:100a+b、
故選D、
【點評】本題考查了利用代數(shù)式表示一個數(shù),關(guān)鍵是正確確定a是百位上的數(shù)字、
10、原產(chǎn)量n噸,增產(chǎn)30%之后的產(chǎn)量應(yīng)為()
A、(1﹣30%)n噸B、(1+30%)n噸C、n+30%噸D、30%n噸
【考點】列代數(shù)式、
【專題】應(yīng)用題、
【分析】原產(chǎn)量n噸,增產(chǎn)30%之后的產(chǎn)量為n+n×30%,再進行化簡即可、
【解答】解:由題意得,增產(chǎn)30%之后的產(chǎn)量為n+n×30%=n(1+30%)噸、
故選B、
【點評】本題考查了根據(jù)實際問題列代數(shù)式,列代數(shù)式要分清語言敘述中關(guān)鍵詞語的意義,理清它們之間的數(shù)量關(guān)系、
七年級上冊數(shù)學(xué)整式教案5
教學(xué)目標(biāo):
1、使學(xué)生在現(xiàn)實情境中理解有理數(shù)加法的意義
2、經(jīng)歷探索有理數(shù)加法法則的過程,掌握有理數(shù)加法法則,并能準(zhǔn)確地進行加法運算。
3、在教學(xué)中適當(dāng)滲透分類討論思想。
重點:有理數(shù)的加法法則
重點:異號兩數(shù)相加的法則
教學(xué)過程:
二、講授新課
1、同號兩數(shù)相加的法則
問題:一個物體作左右方向的運動,我們規(guī)定向左為負(fù),向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的.結(jié)果是多少?
學(xué)生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)
教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結(jié)果是多少?
學(xué)生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)
師生共同歸納法則:同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。
2、異號兩數(shù)相加的法則
教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米?
學(xué)生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)
師生借此結(jié)論引導(dǎo)學(xué)生歸納異號兩數(shù)相加的法則:異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數(shù)的兩個數(shù)相加得零。
教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結(jié)果是多少?
學(xué)生回答:經(jīng)過兩次運動后,物體又回到了原點。也就是物體運動了0m。
師生共同歸納出:互為相反數(shù)的兩個數(shù)相加得零
教師:你能用加法法則來解釋這個法則嗎?
學(xué)生回答:可用異號兩數(shù)相加的法則來解釋。
一般地,還有一個數(shù)同0相加,仍得這個數(shù)。
三、鞏固知識
課本P18 例1,例2、課本P118 練習(xí)1、2題
四、總結(jié)
運算的關(guān)鍵:先分類,再按法則運算;
運算的步驟:先確定符號,再計算絕對值。
注意:要借用數(shù)軸來進一步驗證有理數(shù)的加法法則;異號兩數(shù)相加,首先要確定符號,再把絕對值相加。
五、布置作業(yè)
課本P24習(xí)題1.3第1、7題。
七年級上冊數(shù)學(xué)整式教案6
教學(xué)習(xí)目標(biāo)
一、知識與技能
。1)能用代數(shù)式表示實際問題中的數(shù)量關(guān)系。
。2)理解單項式、單項式的次數(shù),系數(shù)等概念,會指出單項式的次數(shù)和系數(shù)。
講授法、談話法、討論法。
教學(xué)重點
單項式的有關(guān)概念
教學(xué)難點
負(fù)系數(shù)的確定以及準(zhǔn)確確定一個單項式的次數(shù)
課前準(zhǔn)備
教師準(zhǔn)備教學(xué)用課件。
教學(xué)過程
一、新課引入
教師操作課件,展示章前圖案以及字幕,學(xué)生觀看并思考下列問題:
1、青藏鐵路線上,在格爾木到拉薩之間有一段很長的凍土地段,列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據(jù)這些數(shù)據(jù)回答下列問題:
。1)列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
。2)在西寧到拉薩路段,列車通過非凍土地段所需要時間是通過凍土地段所需要時間的2.1倍,如果通過凍土地段所需要t小時,能用含t的式子表示這段鐵路的全長嗎?
。3)在格里木到拉薩路段,列車通過凍土地段比通過非凍土地段多用0.5小時,如果通過凍土地段需要u小時,則這段鐵路的全長可以怎樣表示?凍土地段與非凍土地段相差多少千米?
分析:(1)根據(jù)速度、時間和路程之間的關(guān)系:路程=速度×?xí)r間。列車在凍土地段2小時行駛的路程是100×2=200(千米),3小時行駛的路程為100×3=300(千米),t小時行駛的路程為100×t=100t(千米)。
。2)列車通過非凍土地段所需時間為2.1t小時,行駛的路程為120×2.1t(千米);列車通過凍土地段的路程為100t,因此這段鐵路的全長為120×2.1t+100t(千米)。
(3)在格里木到拉薩路段,列車通過凍土地段要u小時,那么通過非凍土地段要(u-0.5)小時,凍土地段的路程為100u千米,非凍土地段的路程為120(u-0.5)千米,這段鐵路的全長為[100u+120(u-0.5)]千米,凍土地段與非凍土地段相差為[100u-120(u-0.5)]千米。
思路點撥:上述問題(1)可由學(xué)生自己完成,問題(2)、(3)先由學(xué)生思考、交流的基礎(chǔ)上教師引導(dǎo)學(xué)生分析怎樣列式。
上述的3個問題中的數(shù)量關(guān)系我們分別用含有字母的式子表示,通過本章學(xué)習(xí),我們還可以將上述問題(2)、(3)進行加減運算,化簡。
kb2.下面,我們再來看幾個用含字母的式子表示數(shù)量關(guān)系的問題。
用含有字母的式子填空,看看列出的式子有什么特點。
。1)邊長為a的正方體的表面積為______,體積為_______.
(2)鉛筆的單價是x元,圓珠筆的單價是鉛筆的單價的2.5倍圓珠筆的`單價是_______元。
。3)一輛汽車的速度是v千米/時,它t小時行駛的路程為_______千米。
。4)數(shù)n的相反數(shù)是_______.
教師課堂巡視,關(guān)注中下程度的學(xué)生,及時引導(dǎo),學(xué)生探究交流。
上面各問題的代數(shù)式分別是:6a2,a3,2.5x,vt,-n.
觀察上面各式中運算有什么共同特點?
上面各式中,數(shù)字與字母之間,字母與字母之間都是乘法運算,它們都是數(shù)字與字母的積,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n表示-1×n.
像上面這樣,只含有數(shù)與字母的積的式子叫做單項式。單獨的一個數(shù)或一個字母也是單項式。如:-2,a,都是單項式,而,1+x都不是單項。
單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù),例如:6a2的系數(shù)是6,a3的系數(shù)是1,-n的系數(shù)是-1,-的系數(shù)是- 。
單項式表示數(shù)字與字母相乘時,通常把數(shù)字寫成前面,當(dāng)一個單項式的系數(shù)是1或-1時通常省略不寫。
七年級上冊數(shù)學(xué)整式教案7
一、內(nèi)容及其分析
1、教學(xué)內(nèi)容:整式的有關(guān)概念,即能夠正確判斷單項式、多項式以及單項式的系數(shù)和次數(shù)、多項式的項和次數(shù)等。
2、內(nèi)容分析:本節(jié)課要學(xué)的內(nèi)容整式的有關(guān)概念指的是理解并掌握整式的有關(guān)概念,能夠?qū)σ恍┱竭M行分析,其核心是整式的有關(guān)概念,理解它關(guān)鍵就是要能從具體情景中抽象出數(shù)量關(guān)系和變化規(guī)律,使學(xué)生經(jīng)歷對具體問題的探索過程,培養(yǎng)符號感。學(xué)生已經(jīng)學(xué)過有理數(shù)的運算,本節(jié)課的內(nèi)容整式的有關(guān)概念就是在此基礎(chǔ)上的發(fā)展。由于它還與根式的運算有直接的聯(lián)系,所以在本學(xué)科有重要的地位,并有不可忽視的作用,是本學(xué)科的核心內(nèi)容。教學(xué)的重點是單項式的系數(shù)、次數(shù),多項式的項數(shù)、次數(shù)等概念。解決重點的關(guān)鍵是通過對問題的解決使學(xué)生對單項式有個初步的理解,并歸納總結(jié)出單項式的次數(shù)和系數(shù)等概念。
二、目標(biāo)及其解析
1、目標(biāo)定位:理解并掌握整式的有關(guān)概念,能夠?qū)σ恍┱竭M行分析;
2、目標(biāo)解析:理解并掌握整式的有關(guān)概念,就是指能夠正確判斷單項式、多項式以及單項式的系數(shù)和次數(shù)、多項式的項和次數(shù)等。
三、問題診斷與分析
在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是多項式的項數(shù)、次數(shù)等概念難以理解,產(chǎn)生這一問題的原因是單項式的項數(shù)、次數(shù)的影響。要解決這一問題,就要先分清單項式與多項式的區(qū)別,其中關(guān)鍵是能夠正確判斷單項式、多項式以及單項式的系數(shù)和次數(shù)、多項式的項和次數(shù)等。
四、教學(xué)支持條件分析
五、教學(xué)過程設(shè)計:
。ㄒ唬。創(chuàng)設(shè)問題情境,激發(fā)學(xué)生興趣,引出本節(jié)內(nèi)容
問題1:填空,觀察所填式子的特點:
。1)邊長為x的長方形的周長是__________;
(2)一輛汽車的速度是v千米/小時,行駛t小時所走的路程是_______千米;
(3)若正方體的的邊長是a,則它的表面積是_______,體積是________;
。4)設(shè)n是一個數(shù),則它的相反數(shù)是________.
設(shè)計意圖:通過此問題讓學(xué)生知道可以用字母表示數(shù),從實際問題中列出式子,體會數(shù)學(xué)來源于生活,從而體會整式的實際意義。
師生活動:
1、學(xué)生自己解決上述問題,然后觀察所填式子,歸納其特點,進而初步理解單項式的概念。所填式子是4x、vt、6a2、a3、-n,特點是都是數(shù)字或字母的乘積。
2、、引導(dǎo)學(xué)生在觀察的基礎(chǔ)上歸納單項式的定義:
單項式:由數(shù)字或字母乘積組成的式子是單項式。
分析式子4x、vt、6a2、a3、-n得出:
單項式中的數(shù)字因數(shù)叫作單項式的系數(shù)(4x、vt、6a2、a3、-n的系數(shù)分別是4、1、6、1、-1);單項式中所有字母的指數(shù)和是這個單項式的次數(shù)(4x、vt、6a2、a3、-n的次數(shù)分別是1、2、2、3、1)。
例1:用單項式填空,并指出它們的系數(shù)和次數(shù):
。1)每包書有12冊,n包書有___________冊;
。2)底邊長為a,高為h的三角形的面積是_________;
。3)一個長方體的長、寬都是a,高是h,它的體積是________;
。4)一臺電視機原價是a元,現(xiàn)按原價的9折出售,那么這臺電視機現(xiàn)在的售價為______元;
。5)一個長方形的長是0.9,寬是a,這個長方形的面積是_________.
解:(1)12n,它的系數(shù)為12,次數(shù)是1;
。2),它的系數(shù)是,次數(shù)是2;
(3),它的系數(shù)是1,次數(shù)是3;
(4)0.9a,它的系數(shù)是0.9,次數(shù)是1;
(5)0.9a,它的系數(shù)是0.9,次數(shù)是1.
問題2:根據(jù)對單項式的理解,解決下列問題。小明房間的.窗戶如圖(1)所示,其中上方的裝飾物由兩個四分之一圓和一個半圓組成(它們的半徑相同)。
圖(1)裝飾物所占的面積是______.
。2)某校學(xué)生總數(shù)為x,其中男生人數(shù)占總數(shù)的,男生人數(shù)為;
(3)一個長方體的底面是邊長為a的正方形,高是h,體積是。
設(shè)計意圖:通過上面單項式的了解讓學(xué)生再一次在實際問題中列出式子,對比看是不是與單項式相似,加深對概念的理解。
師生活動:
1、學(xué)生獨立思考,分析第(1)個問題中裝飾物是由兩個四分之一圓和一個半圓組成,它們的半徑相同,由圖中的已知條件可知半徑為,所以裝飾物所占的面積恰好是半徑為的一個圓的面積即;(2)中男生人數(shù)為x;(3)中這個長方體的體積是a2h.
2、引導(dǎo)學(xué)生在解決問題后,分析各個單項式的系數(shù)和次數(shù),并進行交流,在交流中糾正一些不正確的想法。
。ǘ﹩栴}引申、探索多項式的有關(guān)概念
問題3:
填空,然后分析所填式子的特點:
1、溫度由t°C下降5°C后是________°C;
七年級上冊數(shù)學(xué)整式教案8
學(xué)習(xí)目標(biāo)
1. 理解三線八角中沒有公共頂點的角的位置關(guān)系 ,知道什么是同位角、內(nèi)錯角、同旁內(nèi)角.
2. 通過比較、觀察、掌握同位角、內(nèi)錯角、同旁內(nèi)角的特征,能正確識別圖形中的同位角、內(nèi)錯角和同旁內(nèi)角.
重點難點
同位角、內(nèi)錯角、同旁內(nèi)角的特征
教學(xué)過程
一·導(dǎo)入
1.指出右圖中所有的鄰補角和對頂角?
2. 圖中的∠1與∠5∠3與∠5∠3與∠6 是鄰補角或?qū)斀菃?
若都不是,請自學(xué)課本P6內(nèi)容后回答它們各是什么關(guān)系的角?
二·問題導(dǎo)學(xué)
1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構(gòu)成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。
2. 如圖⑶是"直線 , 被直線 所截"形成的圖形
(1)∠1與∠5這對角在兩被截線AB,CD的` ,在截線EF 的 ,形如" " 字型.具有這種關(guān)系的一對角叫同位角。
(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關(guān)系的一對角叫內(nèi)錯角。
(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關(guān)系的一對角叫同旁內(nèi)角。
3.找出圖⑶中所有的同位角、內(nèi)錯角、同旁內(nèi)角
4.討論與交流:
(1)"同位角、內(nèi)錯角、同旁內(nèi)角"與"鄰補角、對頂角"在識別方法上有什么區(qū)別?
(2)歸納總結(jié)同位角、內(nèi)錯角、同旁內(nèi)角的特征:
同位角:"F" 字型,"同旁同側(cè)"
"三線八角" 內(nèi)錯角:"Z" 字型,"之間兩側(cè)"
同旁內(nèi)角:"U" 字型,"之間同側(cè)"
三·典題訓(xùn)練
例1. 如圖⑵中∠1與∠2∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?
小結(jié) 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內(nèi)錯角;
兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內(nèi)角;
自我檢測
⒈如圖⑷,下列說法不正確的是( )
A、∠1與∠2是同位角 B、∠2與∠3是同位角
C、∠1與∠3是同位角 D、∠1與∠4不是同位角
、踩鐖D⑸,直線AB、CD被直線EF所截∠A和 是同位角∠A和 是內(nèi)錯角,∠A和 是同旁內(nèi)角.
、橙鐖D⑹, 直線DE截AB, AC, 構(gòu)成八個角:
① 指出圖中所有的同位角、內(nèi)錯角、同旁內(nèi)角.
、凇螦與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?
、慈鐖D⑺,在直角ABC中∠C=90°,DE⊥AC于E,交AB于D .
、僦赋霎(dāng)BC、DE被AB所截時∠3的同位角、內(nèi)錯角和同旁內(nèi)角.
、谠囌f明∠1=∠2=∠3的理由.(提示:三角形內(nèi)角和是1800)
相交線與平行線練習(xí)
課型:復(fù)習(xí)課: 備課人:徐新齊 審核人:霍紅超
一.基礎(chǔ)知識填空
1、如圖∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如圖∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如圖∵∠D=∠DCF(已知)
∴_____//______( )
6、如圖∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2題) (第5、6題) (第7題) (第9題)
7、如圖∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F∠1=∠2.試說明∠BDG+∠B=180°.
二.基礎(chǔ)過關(guān)題:
1、如圖:已知∠A=∠F∠C=∠D,求證:BD∥CE 。
證明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代換 )
∴BD∥CE( )。
2、如圖:已知∠B=∠BGD∠DGF=∠F,求證:∠B + ∠F =180°。
證明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF∠EHD,試說明GM ∥HN.
七年級上冊數(shù)學(xué)整式教案9
絕對值
教學(xué)目標(biāo)
1,掌握絕對值的概念,有理數(shù)大小比較法則.
2,學(xué)會絕對值的計算,會比較兩個或多個有理數(shù)的大小.
3.體驗數(shù)學(xué)的概念、法則來自于實際生活,滲透數(shù)形結(jié)合和分類思想.
教學(xué)難點 兩個負(fù)數(shù)大小的比較
知識重點 絕對值的概念
教學(xué)過程(師生活動) 設(shè)計理念
設(shè)置情境
引入課題 星期天黃老師從學(xué)校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學(xué)校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數(shù)表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學(xué)生思考后,教師作如下說明:
實際生活中有些問題只關(guān)注量的具體值,而與相反意義無關(guān),即正負(fù)性無關(guān),如汽車的耗油量我們只關(guān)心汽車行駛的距離和汽油的價格,而與行駛的方向無關(guān);
觀察并思考:畫一條數(shù)軸,原點表示學(xué)校,在數(shù)軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學(xué)校的距離.
學(xué)生回答后,教師說明如下:
數(shù)軸上表示數(shù)的點到原點的距離只與這個點離開原點的長度有關(guān),而與它所表示的數(shù)的正負(fù)性無關(guān);
一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負(fù)數(shù)表示,后一問的解答則與符號沒有關(guān)系,說明實際生活中有些問題,人們只需知道它們的具體數(shù)值,而并不關(guān)注它們所表示的意義.為引入絕對值概念做準(zhǔn)備.并使學(xué)生體驗數(shù)學(xué)知識與生活實際的聯(lián)系.
因為絕對值概念的幾何意義是數(shù)形轉(zhuǎn)化的典型模型,學(xué)生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準(zhǔn)備.
合作交流
探究規(guī)律 例1求下列各數(shù)的絕對值,并歸納求有理數(shù)a的絕對有什么規(guī)律?
-3,5,0,+58,0.6
要求小組討論,合作學(xué)習(xí).
教師引導(dǎo)學(xué)生利用絕對值的意義先求出答案,然后觀察原數(shù)與它的絕對值這兩個數(shù)據(jù)的特征,并結(jié)合相反數(shù)的意義,最后總結(jié)得出求絕對值法則(見教科書第15頁).
鞏固練習(xí):教科書第15頁練習(xí).
其中第1題按法則直接寫出答案,是求絕對值的基本訓(xùn)練;第2題是對相反數(shù)和絕對值概念進行辨別,對學(xué)生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學(xué)生體會出不同說法之間的區(qū)別. 求一個數(shù)的絕時值的法則,可看做是絕對值概念的一個應(yīng)用,所以安排此例.
學(xué)生能做的盡量讓學(xué)生完成,教師在教學(xué)過程中只是組織者.本著這個理念,設(shè)計這個討論.
結(jié)合實際發(fā)現(xiàn)新知 引導(dǎo)學(xué)生看教科書第16頁的圖,并回答相關(guān)問題:
把14個氣溫從低到高排列;
把這14個數(shù)用數(shù)軸上的點表示出來;
觀察并思考:觀察這些點在數(shù)軸上的位置,并思考它們與溫度的高低之間的關(guān)系,由此你覺得兩個有理數(shù)可以比較大小嗎?
應(yīng)怎樣比較兩個數(shù)的大小呢?
學(xué)生交流后,教師總結(jié):
14個數(shù)從左到右的順序就是溫度從低到高的順序:
在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù).
在上面14個數(shù)中,選兩個數(shù)比較,再選兩個數(shù)試試,通過比較,歸納得出有理數(shù)大小比較法則
想象練習(xí):想象頭腦中有一條數(shù)軸,其上有兩個點,分別表示數(shù)一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數(shù)的大小之間的關(guān)系.
要求學(xué)生在頭腦中有清晰的圖形. 讓學(xué)生體會到數(shù)學(xué)的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性
數(shù)在大小比較法則第2點學(xué)生較難掌握,要從絕對值的意義和數(shù)軸上的數(shù)左小右大這方面結(jié)合起來來了解,所以配置想象練習(xí) ,加強數(shù)與形的想象。
課堂練習(xí) 例2,比較下列各數(shù)的大小(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式
練習(xí):第18頁練習(xí)
小結(jié)與作業(yè)
課堂小結(jié) 怎樣求一個數(shù)的絕對值,怎樣比較有理數(shù)的大小?
本課作業(yè) 1, 必做題:教產(chǎn)書第19頁習(xí)題1,2,第4,5,6,10
2, 選做題:教師自行安排
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)
1,情景的創(chuàng)設(shè)出于如下考慮:①體現(xiàn)數(shù)學(xué)知識與生活實際的緊密聯(lián)系,讓學(xué)生在這些熟悉的'日常生活情境中獲得數(shù)學(xué)體驗,不僅加深對絕對值的理解,更感受到學(xué)習(xí)絕對值概念的必要性和激發(fā)學(xué)習(xí)的興趣.②教材中數(shù)的絕對值概念是根據(jù)幾何意義來定義的(其本質(zhì)是將數(shù)轉(zhuǎn)化為形來解釋,是難點),然后通過練習(xí)歸納出求有理數(shù)的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學(xué)生不易接受.
2, 一個數(shù)絕對值的法則,實際上是絕對值概念的直接應(yīng)用,也體現(xiàn)著分類的數(shù)學(xué)思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學(xué)重點;從知識的發(fā)展和學(xué)生的能力培養(yǎng)角度來看,教師應(yīng)更重視學(xué)生的自主學(xué)習(xí)和探究的過程,關(guān)注學(xué)生的思維,做好教學(xué)的組織和引導(dǎo),留給學(xué)生足夠的空間。
3, 有理數(shù)大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學(xué)生較難理解,教學(xué)中要結(jié)合絕對值的意義和規(guī)定:“在數(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序”,幫助學(xué)生建立“數(shù)軸上越左邊的點到原點的距離越大,所以表示的數(shù)越小”這個數(shù)形結(jié)合的模型.為此設(shè)置了想象練習(xí).
4,本節(jié)課的內(nèi)容包括絕對值的概念和數(shù)的絕對值的求法、有理數(shù)大小比較的法則,教學(xué)內(nèi)容很多,學(xué)生接受起來可能會有困難,建議把有理數(shù)的大小比較移到下節(jié)課教學(xué)。
七年級上冊數(shù)學(xué)整式教案10
教學(xué)目的:
(一)知識點目標(biāo):
1.了解正數(shù)和負(fù)數(shù)在實際生活中的應(yīng)用。
2.深刻理解正數(shù)和負(fù)數(shù)是反映客觀世界中具有相反意義的理。
3.進一步理解0的特殊意義。
(二)能力訓(xùn)練目標(biāo):
1.體會數(shù)學(xué)符號與對應(yīng)的思想,用正、負(fù)數(shù)表示具有相反意義的量。
2.熟練地用正、負(fù)數(shù)表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯(lián)系實際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。
教學(xué)重點:能用正、負(fù)數(shù)表示具有相反意義的量。
教學(xué)難點:進一步理解負(fù)數(shù)、數(shù)0表示的量的意義。
教學(xué)方法:小組合作、師生互動。
教學(xué)過程:
創(chuàng)設(shè)問題情境,引入新課:分小組派代表,注意數(shù)學(xué)語言規(guī)范。
1.認(rèn)真想一想,你能用學(xué)過的知識解決下列問題嗎?
某零件的直徑在圖紙上注明是 ,單位是毫米,這樣標(biāo)注表示零件直徑的`標(biāo)準(zhǔn)尺寸是 毫米,加工要求直徑可以是 毫米,最小可以是 毫米。
2.下列說法中正確的( )
A、帶有“一”的數(shù)是負(fù)數(shù); B、0℃表示沒有溫度;
C、0既可以看作是正數(shù),也可以看作是負(fù)數(shù)。
D、0既不是正數(shù),也不是負(fù)數(shù)。
[師]這節(jié)課我們就來繼續(xù)認(rèn)識正、負(fù)數(shù)及它們在生活中的實際意義,特別是數(shù)0。
講授新課:
例1. 仔細(xì)找一找,找了具有相反意義的量:
甲隊勝5場;零下6度;向南走50米;運進糧食40噸;乙隊負(fù)4場;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一個月內(nèi),小明的體重增加2千克,小華體重減少1千克,小強體重?zé)o變化,寫出他們這個月的體重增長值;
(2)20xx年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,
英國減少3.5%,意大利增長0.2%,中國增長7.5%。
寫出這些國家20xx年商品進出口總額的增長率。
例3. 下列各數(shù)中,哪些是正數(shù),哪些是負(fù)數(shù)?哪些是正整數(shù),哪些是負(fù)整數(shù)?哪些是正分?jǐn)?shù)(小數(shù)),哪些是負(fù)分?jǐn)?shù)(小數(shù))?
例4. 小紅從阿地出發(fā)向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復(fù)習(xí)鞏固:練習(xí):課本P6 練習(xí)
課時小結(jié):這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?
課后作業(yè):課本P7習(xí)題1.1 的第3、6、7、8題。
活動與探究:海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現(xiàn)以海邊堤岸為基準(zhǔn),將其記為0米,那么附近建筑物及潛水艇的高度各應(yīng)如何表示?
課后反思:————
七年級上冊數(shù)學(xué)整式教案11
教學(xué)目標(biāo)和要求:
1.理解單項式及單項式系數(shù)、次數(shù)的概念。
2.會準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù)。
3.初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。
4.通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流能力。
教學(xué)重點和難點:
重點:掌握單項式及單項式的系數(shù)、次數(shù)的概念,并會準(zhǔn)確迅速地確定一個單項式的系數(shù)和次數(shù)。
難點:單項式概念的建立。
教學(xué)方法:
分層次教學(xué),講授、練習(xí)相結(jié)合。
教學(xué)過程:
一、復(fù)習(xí)引入:
1、 列代數(shù)式
(1)若正方形的邊長為a,則正方形的面積是 ;
(2)若三角形一邊長為a,并且這邊上的高為h,則這個三角形的面積為 ;
(3)若x表示正方形棱長,則正方形的體積是 ;
(4)若m表示一個有理數(shù),則它的相反數(shù)是 ;
(5)小明從每月的零花錢中貯存x元錢捐給希望工程,一年下來小明捐款 元。
(數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際,這是新課程標(biāo)準(zhǔn)所賦予的任務(wù)。讓學(xué)生列代數(shù)式不僅復(fù)習(xí)前面的知識,更是為下面給出單項式埋下伏筆,同時使學(xué)生受到較好的思想品德教育。)
2、 請學(xué)生說出所列代數(shù)式的意義。
3、 請學(xué)生觀察所列代數(shù)式包含哪些運算,有何共同運算特征。
由小組討論后,經(jīng)小組推薦人員回答,教師適當(dāng)點撥。
(充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進行自主學(xué)習(xí)和合作交流,可極大的激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性,滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。)
二、講授新課:
1.單項式:
通過特征的描述,引導(dǎo)學(xué)生概括單項式的概念,從而引入課題:單項式,并板書歸納得出的單項式的概念,即由數(shù)與字母的乘積組成的代數(shù)式稱為單項式。然后教師補充,單獨一個數(shù)或一個字母也是單項式,如a,5。
2.練習(xí):判斷下列各代數(shù)式哪些是單項式?
(1) ; (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
(加強學(xué)生對不同形式的單項式的直觀認(rèn)識,同時利用練習(xí)中的單項式轉(zhuǎn)入單項式的系數(shù)和次數(shù)的教學(xué))
3.單項式系數(shù)和次數(shù):
直接引導(dǎo)學(xué)生進一步觀察單項式結(jié)構(gòu),總結(jié)出單項式是由數(shù)字因數(shù)和字母因數(shù)兩部分組成的。以四個單項式a2h,2r,abc,-m為例,讓學(xué)生說出它們的數(shù)字因數(shù)是什么,從而引入單項式系數(shù)的概念并板書,接著讓學(xué)生說出以上幾個單項式的字母因數(shù)是什么,各字母指數(shù)分別是多少,從而引入單項式次數(shù)的概念并板書。
4.例題:
例1:判斷下列各代數(shù)式是否是單項式。如不是,請說明理由;如是,請指出它的系數(shù)和次數(shù)。
、賦+1; ② ; ③ ④- a2b。
答:①不是,因為原代數(shù)式中出現(xiàn)了加法運算;②不是,因為原代數(shù)式是1與x的商;
、凼,它的系數(shù)是,次數(shù)是2; ④是,它的系數(shù)是- ,次數(shù)是3。
例2:下面各題的判斷是否正確?
、-7xy2的系數(shù)是7; ②-x2y3與x3沒有系數(shù); ③-ab3c2的次數(shù)是0+3+2;
④-a3的系數(shù)是-1; ⑤-32x2y3的次數(shù)是7; ⑥ r2h的系數(shù)是 。
通過其中的反例練習(xí)及例題,強調(diào)應(yīng)注意以下幾點:
、賵A周率是常數(shù);
、诋(dāng)一個單項式的系數(shù)是1或-1時,1通常省略不寫,如x2,-a2b等;
、蹎雾検酱螖(shù)只與字母指數(shù)有關(guān)。
5.游戲:
規(guī)則:一個小組學(xué)生說出一個單項式,然后指定另一個小組的學(xué)生回答他的系數(shù)和次數(shù);然后交換,看兩小組哪一組回答得快而準(zhǔn)。
(學(xué)生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的形式,且由編題學(xué)生指定某位同學(xué)回答,可使課堂氣氛活躍,學(xué)生思維活躍,使學(xué)生能夠透徹理解知識,同時培養(yǎng)同學(xué)之間的競爭意識。)
6.課堂練習(xí):課本p56:1,2。
三、課堂小結(jié):
①單項式及單項式的'系數(shù)、次數(shù)。
、诟鶕(jù)教學(xué)過程反饋的信息對出現(xiàn)的問題有針對性地進行小結(jié)。
③通過判斷一個單項式的系數(shù)、次數(shù),培養(yǎng)學(xué)生理解運用新知識的能力,已達到本節(jié)課的教學(xué)目的。
四、課堂作業(yè): 課本p59:1,2。
板書設(shè)計:
《單項式》 1.單項式的定義: 2.例1: 例2: 學(xué)生練習(xí):
教學(xué)后記:
本節(jié)課是研究整式的起始課,它是進一步學(xué)習(xí)多項式的基礎(chǔ),因此對單項式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。為突出重點,突破難點,教學(xué)中要加強直觀性,即為學(xué)生提供足夠的感知材料,豐富學(xué)生的感性認(rèn)識,幫助學(xué)生認(rèn)識概念,同時也要注重分析,亦即在剖析單項式結(jié)構(gòu)時,借助反例練習(xí),抓住概念易混淆處和判斷易出錯處,強化認(rèn)識,幫助學(xué)生理解單項式系數(shù)、次數(shù),為進一步學(xué)習(xí)新知做好鋪墊。
針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、認(rèn)識問題能力較弱的特點,教學(xué)時將以啟發(fā)為主,同時輔之以討論、練習(xí)、合作交流等學(xué)習(xí)活動,達到掌握知識的目的,并逐步培養(yǎng)起學(xué)生觀察、分析、抽象、概括的能力,為進一步學(xué)習(xí)同類項打下堅實的基礎(chǔ)。
【七年級上冊數(shù)學(xué)整式教案】相關(guān)文章:
七年級數(shù)學(xué)上冊教案10-19
七年級語文上冊教案11-19
七年級上冊音樂教案09-08
七年級上冊地理教案05-15
七年級生物上冊教案優(yōu)秀09-27
道德與法治七年級上冊教案02-27
七年級上冊人教版語文的教案01-25
七年級上冊秋天的懷念教案11-23