免费 无码进口视频|欧美一级成人观看|亚洲欧美黄色的网站|高清无码日韩偷拍|亚太三区无码免费|在找免费看A片色片一区|激情小说亚洲精品|91人妻少妇一级性av|久久国产综合精品日韓|一级美女操逼大片

傳統(tǒng)文化作文

中國(guó)傳統(tǒng)文化作文150字

時(shí)間:2025-08-27 10:00:09 傳統(tǒng)文化作文 我要投稿
  • 相關(guān)推薦

中國(guó)傳統(tǒng)文化作文150字15篇(熱)

  在日常學(xué)習(xí)、工作或生活中,大家都跟作文打過交道吧,作文可分為小學(xué)作文、中學(xué)作文、大學(xué)作文(論文)。你知道作文怎樣寫才規(guī)范嗎?以下是小編整理的中國(guó)傳統(tǒng)文化作文150字,歡迎閱讀,希望大家能夠喜歡。

中國(guó)傳統(tǒng)文化作文150字15篇(熱)

中國(guó)傳統(tǒng)文化作文150字1

  1.相似三角形定義:

  對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號(hào)"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對(duì)應(yīng)邊的比叫做相似比。

  4.相似三角形的預(yù)備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對(duì)應(yīng)邊相等"的條件改為"對(duì)應(yīng)邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學(xué)中的用類比的'方法,在舊知識(shí)的基礎(chǔ)上找出新知識(shí)并從中探究新知識(shí)掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的高分成兩個(gè)直角三角形和原三角形相似。

  (2)如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對(duì)應(yīng)角相等。

  (2)相似三角形的對(duì)應(yīng)邊成比例。

  (3)相似三角形的對(duì)應(yīng)高線的比,對(duì)應(yīng)中線的比和對(duì)應(yīng)角平分線的比都等于相似比。

  (4)相似三角形的周長(zhǎng)比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

中國(guó)傳統(tǒng)文化作文150字2

  一、一次函數(shù)圖象y=kx+b

  一次函數(shù)的圖象可以由k、b的正負(fù)來決定:

  k大于零是一撇(由左下至右上,增函數(shù))

  k小于零是一捺(由右上至左下,減函數(shù))

  b等于零必過原點(diǎn);

  b大于零交點(diǎn)(指圖象與y軸的交點(diǎn))在上方(指x軸上方)

  b小于零交點(diǎn)(指圖象與y軸的交點(diǎn))在下方(指x軸下方)

  其圖象經(jīng)過(0,b)和(—b/k,0)這兩點(diǎn)(兩點(diǎn)就可以決定一條直線),且(0,b)在y軸上,(—b/k,0)在x軸上。

  b的數(shù)值就是一次函數(shù)在y軸上的截距(不是距離,有正、負(fù)、零之分)。

  二、不等式組的解集

  1、步驟:去分母(后分子應(yīng)加上括號(hào))、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1。

  2、解一元一次不等式組時(shí),先求出各個(gè)不等式的解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a

  A的解集是解集小小的取小

  B的解集是解集大大的取大

  C的解集是解集大小的小大的取中間

  D的解集是空集解集大大的小小的無解

  另需注意等于的問題。

  三、零的描述

  1、零既不是正數(shù)也不是負(fù)數(shù),是介于正數(shù)和負(fù)數(shù)之間的數(shù)。零是自然數(shù),是整數(shù),是偶數(shù)。

  A、零是表示具有相反意義的量的基準(zhǔn)數(shù)。

  B、零是判定正、負(fù)數(shù)的界限。

  C、在一切非負(fù)數(shù)中有一個(gè)最小值是0;在一切非正數(shù)中有一個(gè)最大值是0。

  2、零的運(yùn)算性質(zhì)

  A、乘方:零的正整數(shù)次冪都是零。

  B、除法:零除以任何不等于零的數(shù)都得零;零不能作除數(shù);0沒有倒數(shù)。

  C、乘法:零乘以任何數(shù)都得零。ab=0a、b中至少有一個(gè)是0。

  D、加法a、b互為相反數(shù)a+b=0

  E、減法(比較大小用)a—b=0a=b;a—b0ab;a—b0a

  3、在近似數(shù)中,當(dāng)0作為有效數(shù)字時(shí),它表示不同的精確度,不能省略。

  四、因式分解分解方法

  首先提取公因式,然后依次用公式,十字相乘,分組分解法,若都不行,再拆項(xiàng)添項(xiàng)試一試。必須進(jìn)行到每一個(gè)多項(xiàng)式因式不能再分解為止

  1、提公因式法

  首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式。當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個(gè)多項(xiàng)式時(shí),可以用設(shè)輔助元的'方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個(gè)多項(xiàng)式因式看作一個(gè)整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時(shí)候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃,或改變符?hào),直到可確定多項(xiàng)式的公因式。

  2、公式

  a2—b2=(a+b)(a—b)

  a2+2ab+b2=(a+b)2

  a2—2ab+b2=(a—b)2,還立方差和及其他公式

  3、十字相乘

  運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解。

  將常數(shù)項(xiàng)分解成滿足要求的兩個(gè)因數(shù)積的多次嘗試,一般步驟:

 、倭谐龀(shù)項(xiàng)分解成兩個(gè)因數(shù)的積各種可能情況;

  ②嘗試其中的哪兩個(gè)因數(shù)的和恰好等于一次項(xiàng)系數(shù)。

  4、分組分解法

  多項(xiàng)式am+an+bm+bn,這四項(xiàng)中沒有公因式,所以不能用提取公因式法,再看它又不能用公式、十字相乘法分解因式。如果把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式。

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  再提公因式(m+n)

  a(m+n)+b(m+n)

  =(m+n)?(a+b)。

  可見如把一個(gè)多項(xiàng)式的項(xiàng)分組并提取公因式后它們的另一個(gè)因式正好相同,那么這個(gè)多項(xiàng)式就可以用分組分解法來分解因式。

中國(guó)傳統(tǒng)文化作文150字3

  1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。

  2.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。

  3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

  4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

  6.不在同一直線上的三點(diǎn)確定一個(gè)圓。

  7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

  推論1:

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧;

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

  推論2:圓的兩條平行弦所夾的弧相等。

  8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

  10.經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

  11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

  13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  14.切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的`連線平分兩條切線的夾角。

  15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。

  16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

  17.

 、賰蓤A外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交d>R-r)

  ④兩圓內(nèi)切d=R-r(R>r)

 、輧蓤A內(nèi)含d=r)

  18.定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

  19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

  20.弧長(zhǎng)計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

  21.內(nèi)公切線長(zhǎng)= d-(R-r)外公切線長(zhǎng)= d-(R+r)。

  22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

  23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

  24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

中國(guó)傳統(tǒng)文化作文150字4

  1、過兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等——補(bǔ)角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理

  xxx兩邊的和大于第三邊

  16、推論

  xxx兩邊的差小于第三邊

  17、xxx內(nèi)角和定理:

  xxx三個(gè)內(nèi)角的和等于180°

  18、推論1

  直角xxx的兩個(gè)銳角互余

  19、推論2

  xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3

  xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的

  兩個(gè)xxx全等

  24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等

  27、定理1

  在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2

  到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、推論1

  等腰xxx頂角的平分線平分底邊并且垂直于底邊

  31、推論2

  等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊xxx的各角都相等,并且每一個(gè)角都等于60°

  33、等腰xxx的判定定理

  如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  34、等腰xxx的性質(zhì)定理

  等腰xxx的兩個(gè)底角相等

  (即等邊對(duì)等角)

  35、推論1

  三個(gè)角都相等的xxx是等邊xxx

  36、推論

  有一個(gè)角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理

  和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1

  關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理

  如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3

  兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理

  直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果xxx的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的'外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對(duì)角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對(duì)邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對(duì)角線互相平分

  56、平行四邊形判定定理1

  兩組對(duì)角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對(duì)邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對(duì)角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對(duì)邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2

  矩形的對(duì)角線相等

  62、矩形判定定理1

  有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2

  對(duì)角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對(duì)角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2

  正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71、定理1

  關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72、定理2

  關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73、逆定理

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對(duì)角線相等

  76、等腰梯形判定定理

  在同一底上的兩個(gè)角相等的梯

  形是等腰梯形

  77、對(duì)角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過xxx一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81、xxx中位線定理

  xxx的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87、推論

  平行于xxx一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88、定理

  如果一條直線截xxx的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于xxx的第三邊

  89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對(duì)應(yīng)成比例

  90、定理

  平行于xxx一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的xxx與原xxx相似

  91、相似xxx判定定理1

  兩角對(duì)應(yīng)相等,兩xxx相似(ASA)

  92、直角xxx被斜邊上的高分成的兩個(gè)直角xxx和原xxx相似

  93、判定定理2

  兩邊對(duì)應(yīng)成比例且夾角相等,兩xxx相似(SAS)

  94、判定定理3

  三邊對(duì)應(yīng)成比例,兩xxx相似(SSS)

  95、定理

  如果一個(gè)直角xxx的斜邊和一條直角邊與另一個(gè)直角xxx的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角xxx相似(HL)

  96、性質(zhì)定理1

  相似xxx對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似xxx周長(zhǎng)的比等于相似比

  98、性質(zhì)定理3

  相似xxx面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧(直徑)

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116、定理

  一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117、推論1

  同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118、推論2

  半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119、推論3

  如果xxx一邊上的中線等于這邊的一半,那么這個(gè)xxx是直角xxx

  120、定理

  圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121、①直線L和⊙O相交

  0

 、谥本L和⊙O相切

  d=r

 、壑本L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點(diǎn)的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

  125、推論2

  經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126、切線長(zhǎng)定理

  從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對(duì)邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對(duì)的圓周角?

  129、推論

  如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項(xiàng)

  132、切割線定理

  從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?

  133、推論

  從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

  割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

  ③兩圓相交

  R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切

  d=R-r(R>r)

  ⑤兩圓內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理

  任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長(zhǎng)

  142、正xxx面積√3a^2/4

  a表示邊長(zhǎng)

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長(zhǎng)=d-(R-r)

  外公切線長(zhǎng)=d-(R+r)

中國(guó)傳統(tǒng)文化作文150字5

  1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合4、同圓或等圓的半徑相等

  5、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧11、推論1:

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對(duì)的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

  ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  20、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)25、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  26、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的`兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角

  27、圓的外切四邊形的兩組對(duì)邊的和相等

  28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角

  29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r

 、蹆蓤A相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)

  36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  39、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)42、正三角形面積√3a/4a表示邊長(zhǎng)

  43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長(zhǎng)計(jì)算公式:L=n兀R/180

  45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

中國(guó)傳統(tǒng)文化作文150字6

  1、初中數(shù)學(xué)知識(shí)點(diǎn)口訣

  人說幾何很困難,難點(diǎn)就在輔助線。

  輔助線,如何添?把握定理和概念。

  還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。

  圖中有角平分線,可向兩邊作垂線。

  角平分線平行線,等腰三角形來添。

  線段垂直平分線,常向兩端把線連。

  要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。

  三角形中兩中點(diǎn),連接則成中位線。

  三角形中有中線,延長(zhǎng)中線加一倍。

  梯形里面作高線,平移一腰試試看。

  等積式子比例換,尋找相似很關(guān)鍵。

  直接證明有困難,等量代換少麻煩。

  斜邊上面作高線,弦高公式是關(guān)鍵。

  半徑與弦長(zhǎng)計(jì)算,弦心距來中間站。

  圓上若有一切線,切點(diǎn)圓心半徑連。

  要想證明是切線,半徑垂線仔細(xì)辨。

  是直徑,成半圓,想成直角徑連弦。

  弧有中點(diǎn)圓心連,垂徑定理要記全。

  圓周角邊兩條弦,直徑和弦端點(diǎn)連。

  要想作個(gè)外接圓,各邊作出中垂線。

  還要作個(gè)內(nèi)切圓,內(nèi)角平分線夢(mèng)園。

  如果遇到相交圓,不要忘作公共弦。

  若是添上連心線,切點(diǎn)肯定在上面。

  輔助線,是虛線,畫圖注意勿改變。

  假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。

  基本作圖很關(guān)鍵,平時(shí)掌握要熟練。

  解題還要多心眼,經(jīng)?偨Y(jié)方法顯。

  切勿盲目亂添線,方法靈活應(yīng)多變。

  分析綜合方法選,困難再多也會(huì)減。

  虛心勤學(xué)加苦練,成績(jī)上升成直線。

  2、初中數(shù)學(xué)知識(shí)點(diǎn)口訣

  學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。

  分散條件要集中,常要添加輔助線。

  畏懼心理不要有,其次要把觀念變。

  熟能生巧有規(guī)律,真知灼見靠實(shí)踐。

  圖中已知有中線,倍長(zhǎng)中線把線連。

  旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。

  多條中線連中點(diǎn),便可得到中位線。

  倘若知角平分線,既可兩邊作垂線。

  也可沿線去翻折,全等圖形立呈現(xiàn)。

  角分線若加垂線,等腰三角形可見。

  角分線加平行線,等線段角位置變。

  已知線段中垂線,連接兩端等線段。

  輔助線必畫虛線,便與原圖聯(lián)系看。

  3、有理數(shù)的加法運(yùn)算

  同號(hào)兩數(shù)來相加,絕對(duì)值加不變號(hào)。

  異號(hào)相加大減小,大數(shù)決定和符號(hào)。

  互為相反數(shù)求和,結(jié)果是零須記好。

  【注】“大”減“小”是指絕對(duì)值的大小。

  4、有理數(shù)的`減法運(yùn)算

  減正等于加負(fù),減負(fù)等于加正。

  有理數(shù)的乘法運(yùn)算符號(hào)法則

  同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。

  5、合并同類項(xiàng)

  說起合并同類項(xiàng),法則千萬不能忘。

  只求系數(shù)代數(shù)和,字母指數(shù)留原樣。

  6、去、添括號(hào)法則

  去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。

  擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。

  括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。

  7、解方程

  已知未知鬧分離,分離要靠移完成。

  移加變減減變加,移乘變除除變乘。

  8、平方差公式

  兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。

  積化和差變兩項(xiàng),完全平方不是它。

  9、完全平方公式

  二數(shù)和或差平方,展開式它共三項(xiàng)。

  首平方與末平方,首末二倍中間放。

  和的平方加聯(lián)結(jié),先減后加差平方。

  10、完全平方公式

  首平方又末平方,二倍首末在中央。

  和的平方加再加,先減后加差平方。

  11、解一元一次方程

  先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。

  同類各項(xiàng)去合并,系數(shù)化“1”還沒好。

  求得未知須檢驗(yàn),回代值等才上算。

  12、解一元一次方程

  先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

  系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。

  13、因式分解與乘法

  和差化積是乘法,乘法本身是運(yùn)算。

  積化和差是分解,因式分解非運(yùn)算。

  14、因式分解

  兩式平方符號(hào)異,因式分解你別怕。

  兩底和乘兩底差,分解結(jié)果就是它。

  兩式平方符號(hào)同,底積2倍坐中央。

  因式分解能與否,符號(hào)上面有文章。

  同和異差先平方,還要加上正負(fù)號(hào)。

  同正則正負(fù)就負(fù),異則需添冪符號(hào)。

  15、因式分解

  一提二套三分組,十字相乘也上數(shù)。

  四種方法都不行,拆項(xiàng)添項(xiàng)去重組。

  重組無望試求根,換元或者算余數(shù)。

  多種方法靈活選,連乘結(jié)果是基礎(chǔ)。

  同式相乘若出現(xiàn),乘方表示要記住。

  【注】一提(提公因式)二套(套公式)

  16、因式分解

  一提二套三分組,叉乘求根也上數(shù)。

  五種方法都不行,拆項(xiàng)添項(xiàng)去重組。

  對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。

  17、二次三項(xiàng)式的因式分解

  先想完全平方式,十字相乘是其次。

  兩種方法行不通,求根分解去嘗試。

  18、比和比例

  兩數(shù)相除也叫比,兩比相等叫比例。

  外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。

  分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。

  同時(shí)交換內(nèi)外項(xiàng),便要稱其為反比。

  前后項(xiàng)和比后項(xiàng),比值不變叫合比。

  前后項(xiàng)差比后項(xiàng),組成比例是分比。

  兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。

  前項(xiàng)和比后項(xiàng)和,比值不變叫等比。

  19、解比例

  外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。

  20、求比值

  由已知去求比值,多種途徑可利用。

  活用比例七性質(zhì),變量替換也走紅。

  消元也是好辦法,殊途同歸會(huì)變通。

  21、正比例與反比例

  商定變量成正比,積定變量成反比。

  22、正比例與反比例

  變化過程商一定,兩個(gè)變量成正比。

  變化過程積一定,兩個(gè)變量成反比。

  23、判斷四數(shù)成比例

  四數(shù)是否成比例,遞增遞減先排序。

  兩端積等中間積,四數(shù)一定成比例。

  24、判斷四式成比例

  四式是否成比例,生或降冪先排序。

  兩端積等中間積,四式便可成比例。

  25、比例中項(xiàng)

  成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。

  有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。

  比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。

  成比例的四項(xiàng)中,外項(xiàng)相同有不少。

  有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。

  同數(shù)平方等異積,比例中項(xiàng)無處逃。

  26、根式與無理式

  表示方根代數(shù)式,都可稱其為根式。

  根式異于無理式,被開方式無限制。

  被開方式有字母,才能稱為無理式。

  無理式都是根式,區(qū)分它們有標(biāo)志。

  被開方式有字母,又可稱為無理式。

  27、求定義域

  求定義域有講究,四項(xiàng)原則須留意。

  負(fù)數(shù)不能開平方,分母為零無意義。

  指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,滿足多個(gè)不等式。

  求定義域要過關(guān),四項(xiàng)原則須注意。

  負(fù)數(shù)不能開平方,分母為零無意義。

  分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。

  限制條件不唯一,不等式組求解集。

  28、解一元一次不等式

  先去分母再括號(hào),移項(xiàng)合并同類項(xiàng)。

  系數(shù)化“1”有講究,同乘除負(fù)要變向。

  先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。

  同類各項(xiàng)去合并,系數(shù)化“1”注意了。

  同乘除正無防礙,同乘除負(fù)也變號(hào)。

  29、解一元一次不等式組

  大于頭來小于尾,大小不一中間找。

  大大小小沒有解,四種情況全來了。

  同向取兩邊,異向取中間。

  中間無元素,無解便出現(xiàn)。

  幼兒園小鬼當(dāng)家,(同小相對(duì)取較。

  敬老院以老為榮,(同大就要取較大)

  軍營(yíng)里沒老沒少。(大小小大就是它)

  大大小小解集空。(小小大大哪有哇)

  30、解一元二次不等式

  首先化成一般式,構(gòu)造函數(shù)第二站。

  判別式值若非負(fù),曲線橫軸有交點(diǎn)。

  A正開口它向上,大于零則取兩邊。

  代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。

  方程若無實(shí)數(shù)根,口上大零解為全。

  小于零將沒有解,開口向下正相反。

  31、用平方差公式因式分解

  異號(hào)兩個(gè)平方項(xiàng),因式分解有辦法。

  兩底和乘兩底差,分解結(jié)果就是它。

  32、用完全平方公式因式分解

  兩平方項(xiàng)在兩端,底積2倍在中部。

  同正兩底和平方,全負(fù)和方相反數(shù)。

  分成兩底差平方,方正倍積要為負(fù)。

  兩邊為負(fù)中間正,底差平方相反數(shù)。

  一平方又一平方,底積2倍在中路。

  三正兩底和平方,全負(fù)和方相反數(shù)。

  分成兩底差平方,兩端為正倍積負(fù)。

  兩邊若負(fù)中間正,底差平方相反數(shù)。

  33、用公式法解一元二次方程

  要用公式解方程,首先化成一般式。

  調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。

  確定參數(shù)abc,計(jì)算方程判別式。

  判別式值與零比,有無實(shí)根便得知。

  有實(shí)根可套公式,沒有實(shí)根要告之。

  34、用常規(guī)配方法解一元二次方程

  左未右已先分離,二系化“1”是其次。

  一系折半再平方,兩邊同加沒問題。

  左邊分解右合并,直接開方去解題。

  該種解法叫配方,解方程時(shí)多練習(xí)。

  35、用間接配方法解一元二次方程

  已知未知先分離,因式分解是其次。

  調(diào)整系數(shù)等互反,和差積套恒等式。

  完全平方等常數(shù),間接配方顯優(yōu)勢(shì)。

  【注】恒等式

  36、解一元二次方程

  方程沒有一次項(xiàng),直接開方最理想。

  如果缺少常數(shù)項(xiàng),因式分解沒商量。

 。、c相等都為零,等根是零不要忘。

 。狻ⅲ阃瑫r(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方。

  37、正比例函數(shù)的鑒別

  判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實(shí)數(shù)都要有。

  正比例函數(shù)是否,辨別需分兩步走。

  一量表示另一量,有沒有。

  若有再去看取值,全體實(shí)數(shù)都需要。

  區(qū)分正比例函數(shù),衡量可分兩步走。

  一量表示另一量,是與否。

  若有還要看取值,全體實(shí)數(shù)都要有。

  38、正比例函數(shù)的圖象與性質(zhì)

  正比函數(shù)圖直線,經(jīng)過和原點(diǎn)。

  K正一三負(fù)二四,變化趨勢(shì)記心間。

  K正左低右邊高,同大同小向爬山。

  K負(fù)左高右邊低,一大另小下山巒。

  39、一次函數(shù)

  一次函數(shù)圖直線,經(jīng)過點(diǎn)。

  K正左低右邊高,越走越高向爬山。

  K負(fù)左高右邊低,越來越低很明顯。

  K稱斜率b截距,截距為零變正函。

  40、反比例函數(shù)

  反比函數(shù)雙曲線,經(jīng)過點(diǎn)。

  K正一三負(fù)二四,兩軸是它漸近線。

  K正左高右邊低,一三象限滑下山。

  K負(fù)左低右邊高,二四象限如爬山。

  41、二次函數(shù)

  二次方程零換y,二次函數(shù)便出現(xiàn)。

  全體實(shí)數(shù)定義域,圖像叫做拋物線。

  拋物線有對(duì)稱軸,兩邊單調(diào)正相反。

  A定開口及大小,線軸交點(diǎn)叫頂點(diǎn)。

  頂點(diǎn)非高即最低。上低下高很顯眼。

  如果要畫拋物線,平移也可去描點(diǎn),提取配方定頂點(diǎn),兩條途徑再挑選。

  列表描點(diǎn)后連線,平移規(guī)律記心間。

  左加右減括號(hào)內(nèi),號(hào)外上加下要減。

  二次方程零換y,就得到二次函數(shù)。

  圖像叫做拋物線,定義域全體實(shí)數(shù)。

  A定開口及大小,開口向上是正數(shù)。

  絕對(duì)值大開口小,開口向下A負(fù)數(shù)。

  拋物線有對(duì)稱軸,增減特性可看圖。

  線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。

  如果要畫拋物線,描點(diǎn)平移兩條路。

  提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。

  列表描點(diǎn)后連線,三點(diǎn)大致定全圖。

  若要平移也不難,先畫基礎(chǔ)拋物線,頂點(diǎn)移到新位置,開口大小隨基礎(chǔ)。

  【注】基礎(chǔ)拋物線

  42、直線、射線與線段

  直線射線與線段,形狀相似有關(guān)聯(lián)。

  直線長(zhǎng)短不確定,可向兩方無限延。

  射線僅有一端點(diǎn),反向延長(zhǎng)成直線。

  線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。

  兩點(diǎn)定線是共性,組成圖形最常見。

  43、角

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

  共線反向是平角,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  直平之間是鈍角,平周之間叫優(yōu)角。

  互余兩角和直角,和是平角互補(bǔ)角。

  一點(diǎn)出發(fā)兩射線,組成圖形叫做角。

  平角反向且共線,平角之半叫直角。

  平角兩倍成周角,小于直角叫銳角。

  鈍角界于直平間,平周之間叫優(yōu)角。

  和為直角叫互余,互為補(bǔ)角和平角。

  44、證等積或比例線段

  等積或比例線段,多種途徑可以證。

  證等積要改等比,對(duì)照?qǐng)D形看特征。

  共點(diǎn)共線線相交,平行截比把題證。

  三點(diǎn)定型十分像,想法來把相似證。

  圖形明顯不相似,等線段比替換證。

  換后結(jié)論能成立,原來命題即得證。

  實(shí)在不行用面積,射影角分線也成。

  只要學(xué)習(xí)肯登攀,手腦并用無不勝。

  45、解無理方程

  一無一有各一邊,兩無也要放兩邊。

  乘方根號(hào)無蹤跡,方程可解無負(fù)擔(dān)。

  兩無一有相對(duì)難,兩次乘方也好辦。

  特殊情況去換元,得解驗(yàn)根是必然。

  46、解分式方程

  先約后乘公分母,整式方程轉(zhuǎn)化出。

  特殊情況可換元,去掉分母是出路。

  求得解后要驗(yàn)根,原留增舍別含糊。

  47、列方程解應(yīng)用題

  列方程解應(yīng)用題,審設(shè)列解雙檢答。

  審題弄清已未知,設(shè)元直間兩辦法。

  列表畫圖造方程,解方程時(shí)守章法。

  檢驗(yàn)準(zhǔn)且合題意,問求同一才作答。

  48、兩點(diǎn)間距離公式

  同軸兩點(diǎn)求距離,大減小數(shù)就為之。

  與軸等距兩個(gè)點(diǎn),間距求法亦如此。

  平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。

  差方相加開平方,距離公式要牢記。

  49、矩形的判定

  任意一個(gè)四邊形,三個(gè)直角成矩形;

  對(duì)角線等互平分,四邊形它是矩形。

  已知平行四邊形,一個(gè)直角叫矩形;

  兩對(duì)角線若相等,理所當(dāng)然為矩形。

  50、菱形的判定

  任意一個(gè)四邊形,四邊相等成菱形;

  四邊形的對(duì)角線,垂直互分是菱形。

  已知平行四邊形,鄰邊相等叫菱形;

  兩對(duì)角線若垂直,順理成章為菱形。

中國(guó)傳統(tǒng)文化作文150字7

  一、平移變換:

  1。概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

  2。性質(zhì):(1)平移前后圖形全等;

 。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

  (1)分清題目要求,確定平移的方向和平移的距離;

 。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn);

 。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn);

 。4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母;

  (5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1。概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

  說明:

 。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

  (2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。

  (3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的`。

  (4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2。性質(zhì):

 。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

  (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3。旋轉(zhuǎn)作圖的步驟和方法:

  (1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點(diǎn);

 。3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);

 。4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  常見考法

 。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

  (2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

  誤區(qū)提醒

 。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

 。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

中國(guó)傳統(tǒng)文化作文150字8

  初中數(shù)學(xué)例題的知識(shí)點(diǎn)梳理

  有理數(shù)的加法運(yùn)算:同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,符號(hào)跟著大的跑;絕對(duì)值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對(duì)值的大小。

  合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

  去、添括號(hào)法則:去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。

  恒等變換:兩個(gè)數(shù)字來相減,互換位置最常見,正負(fù)只看其指數(shù),奇數(shù)變號(hào)偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

  平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。

  因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。

  “代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級(jí)向下變括。ㄐ 小螅

  單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開)方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。

  一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。

  一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

  一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚)于(吃)取兩邊,。~)于(吃)取中間。

  分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。

  分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。

  最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。

  特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。

  象限角的'平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。

  平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。

  對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。

  自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。

  一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。

  二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。

  反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。

  巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對(duì)魚磷(余鄰)直刀切。正:

  正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  三角函數(shù)的增減性:正增余減。

  特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

  數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

  平行四邊形的判定:要證平行四邊形,兩個(gè)條件才能行,一證對(duì)邊都相等,或證對(duì)邊都平行,一組對(duì)邊也可以,必須相等且平行。對(duì)角線,是個(gè)寶,互相平分“跑不了”,對(duì)角相等也有用,“兩組對(duì)角”才能成。

  梯形問題的輔助線:移動(dòng)梯形對(duì)角線,兩腰之和成一線;平行移動(dòng)一條腰,兩腰同在“△”現(xiàn);延長(zhǎng)兩腰交一點(diǎn),“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

  添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點(diǎn),連接則成中位線;三角形中有中線,延長(zhǎng)中線翻一番。

  圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細(xì)找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對(duì)角互補(bǔ)記心間,外角等于內(nèi)對(duì)角,四邊形定內(nèi)接圓;直角相對(duì)或共弦,試試加個(gè)輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點(diǎn)共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點(diǎn),證垂直來半徑連,直線與圓未給點(diǎn),需證半徑作垂線;四邊形有內(nèi)切圓,對(duì)邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。

  學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。

  所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。

  2、研究每題都考什么

  數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯(cuò)一次反思一次

  每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。

  學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了。

  4、分析試卷總結(jié)經(jīng)驗(yàn)

  每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的`方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。

  數(shù)學(xué)經(jīng)常遇到的問題解答

  1、要提高數(shù)學(xué)成績(jī)首先要做什么?

  這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

  對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)?

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績(jī)不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。

中國(guó)傳統(tǒng)文化作文150字9

  1有理數(shù)加法法則

  1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

  2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;

  3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

  2有理數(shù)加法的運(yùn)算律

  1、加法的交換律:a+b=b+a;

  2、加法的結(jié)合律:(a+b)+c=a+(b+c)

  3有理數(shù)減法法則

  減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)

  4有理數(shù)乘法法則

  1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;

  2、任何數(shù)同零相乘都得零;

  3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定。

  5有理數(shù)乘法的運(yùn)算律

  1、乘法的交換律:ab=ba;

  2、乘法的結(jié)合律:(ab)c=a(bc);

  3、乘法的分配律:a(b+c)=ab+ac

  6單項(xiàng)式

  只含有數(shù)字與字母的積的代數(shù)式叫做單項(xiàng)式。

  注意:?jiǎn)雾?xiàng)式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的.。

  7多項(xiàng)式

  1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做這個(gè)多項(xiàng)式的項(xiàng)。多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

  2、同類項(xiàng)所有字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類項(xiàng)。

  8中心對(duì)稱

  1、定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心。這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。

  2、心對(duì)稱的兩條基本性質(zhì):

 。1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過對(duì)稱中心,而且被對(duì)稱中心所平分。

 。2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形。

  3、中心對(duì)稱圖形

  把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。

中國(guó)傳統(tǒng)文化作文150字10

  一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強(qiáng)。甚至有存在探究題目出現(xiàn)。

  主要考察內(nèi)容:

 、贂(huì)畫一次函數(shù)的圖像,并掌握其性質(zhì)。

 、跁(huì)根據(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

 、勰苡靡淮魏瘮(shù)解決實(shí)際問題。

  ④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

  突破方法:

 、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

 、谶\(yùn)用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。

  ③掌握用待定系數(shù)法球一次函數(shù)解析式。

 、茏鲆恍┚C合題的'訓(xùn)練,提高分析問題的能力。

  函數(shù)性質(zhì):

  1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

  2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的點(diǎn),坐標(biāo)為(0,b)。

  3當(dāng)b=0時(shí)(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  4.在兩個(gè)一次函數(shù)表達(dá)式中:

  當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b也相同時(shí),兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達(dá)式中的k相同,b不相同時(shí),兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b不相同時(shí),兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達(dá)式中的k不相同,b相同時(shí),兩一次函數(shù)圖像交于y軸上的同一點(diǎn)(0,b)。若兩個(gè)變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

  1、作法與圖形:通過如下3個(gè)步驟:

 。1)列表.

  (2)描點(diǎn);[一般取兩個(gè)點(diǎn),根據(jù)“兩點(diǎn)確定一條直線”的道理,也可叫“兩點(diǎn)法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點(diǎn)畫直線即可。

  正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點(diǎn)的一條直線,一般取(0,0)和(1,k)兩點(diǎn)。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點(diǎn)分別是-k分之b與0,0與b).

  2、性質(zhì):

  (1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。

 。2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點(diǎn)。

  3、函數(shù)不是數(shù),它是指某一變化過程中兩個(gè)變量之間的關(guān)系。

  4、k,b與函數(shù)圖像所在象限:

  y=kx時(shí)(即b等于0,y與x成正比例):

  當(dāng)k>0時(shí),直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時(shí)此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

中國(guó)傳統(tǒng)文化作文150字11

  1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過一點(diǎn)有且只有一條直線和已知直線垂直

  6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余

  19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分

  56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對(duì)角線相等

  62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

  73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等

  76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的'直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

  126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對(duì)邊的和相等128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

  129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

  133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  (n2)180139正n邊形的每個(gè)內(nèi)角都等于

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長(zhǎng)

  2142正三角形面積

  32aa表示邊長(zhǎng)4143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長(zhǎng)計(jì)算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

  公式分類及公式表達(dá)式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

  b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac

中國(guó)傳統(tǒng)文化作文150字12

  1、xxx:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做xxx。

  2、xxx的分類

  3、xxx的三邊關(guān)系:xxx任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從xxx的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做xxx的高。

  5、中線:在xxx中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做xxx的中線。

  6、角平分線:xxx的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做xxx的角平分線。

  7、高線、中線、角平分線的'意義和做法

  8、xxx的穩(wěn)定性:xxx的形狀是固定的,xxx的這個(gè)性質(zhì)叫xxx的穩(wěn)定性。

  9、xxx內(nèi)角和定理:xxx三個(gè)內(nèi)角的和等于180°

  推論1直角xxx的兩個(gè)銳角互余

  推論2xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

  推論3xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;xxx的內(nèi)角和是外角和的一半

  10、xxx的外角:xxx的一條邊與另一條邊延長(zhǎng)線的夾角,叫做xxx的外角。

  11、xxx外角的性質(zhì)

  (1)頂點(diǎn)是xxx的一個(gè)頂點(diǎn),一邊是xxx的一邊,另一邊是xxx的一邊的延長(zhǎng)線;

  (2)xxx的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

  (3)xxx的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

  (4)xxx的外角和是360°。

中國(guó)傳統(tǒng)文化作文150字13

  一、可能性:

  1. 必然事件:有些事情我們能確定他一定會(huì)發(fā)生,這些事情稱為必然事件;

  2.不可能事件:有些事情我們能肯定他一定不會(huì)發(fā)生,這些事情稱為不可能事件;

  3.確定事件:必然事件和不可能事件都是確定的;

  4.不確定事件:有很多事情我們無法肯定他會(huì)不會(huì)發(fā)生,這些事情稱為不確定事件。

  5.一般來說,不確定事件發(fā)生的可能性是有大小的。.

  二、概率:

  1.概率的意義:表示一個(gè)事件發(fā)生的可能性大小的這個(gè)數(shù)叫做該事件的概率。

  2.必然事件發(fā)生的概率為1,記作P(必然事件)=1;不可能事件發(fā)生的概率為0,記作P(不可能事件)=0;如果A為不確定事件,那么0

  3.一步試驗(yàn)事件發(fā)生的概率的計(jì)算公式是P=k/n,n為該事件所有等可能出現(xiàn)的結(jié)果數(shù),k為事件包含的結(jié)果數(shù)。兩步試驗(yàn)事件發(fā)生的概率的發(fā)生的概率的計(jì)算方法有兩種,一種是列表法,另一種是畫樹狀圖,利用這兩種方法計(jì)算兩步實(shí)驗(yàn)時(shí),應(yīng)用樹狀圖或列表將簡(jiǎn)單的兩步試驗(yàn)所有可能的情況表示出來,從而計(jì)算隨機(jī)事件的概率。

  初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的。數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻.規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

  對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

  下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點(diǎn)的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

  通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

中國(guó)傳統(tǒng)文化作文150字14

  基本定理

  1、過兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等

  4、同角或等角的余角相等

  5、過一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理xxx兩邊的和大于第三邊

  16、推論xxx兩邊的差小于第三邊

  17、xxx內(nèi)角和定理xxx三個(gè)內(nèi)角的和等于180°

  18、推論1直角xxx的兩個(gè)銳角互余

  19、推論2 xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3 xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等

  23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等

  25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的.兩個(gè)xxx全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等

  27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、等腰xxx的性質(zhì)定理等腰xxx的兩個(gè)底角相等(即等邊對(duì)等角)

  31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊

  32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3等邊xxx的各角都相等,并且每一個(gè)角都等于60°

  34、等腰xxx的判定定理如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  35、推論1三個(gè)角都相等的xxx是等邊xxx

  36、推論2有一個(gè)角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的一半

  39、定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果xxx的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx

  48、定理四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

中國(guó)傳統(tǒng)文化作文150字15

  二元一次方程(組)

  1、二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。

  2、二元一次方程組:含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。

  3、二元一次方程組的解:二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

  4、二元一次方程組的解法。

 。1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉,主要步驟是,將其中一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代人另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡(jiǎn)稱代人法。

 。2)加減消元法:通過方程兩邊分別相加(減)消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱加減法。

  提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。

  平面直角坐標(biāo)系

  下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  平面直角坐標(biāo)系的要素:

 、僭谕黄矫

  ②兩條數(shù)軸

 、刍ハ啻怪

 、茉c(diǎn)重合

  三個(gè)規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

  通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  點(diǎn)的`坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

  對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

  一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

  希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。

  因式分解的一般步驟

  如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

  相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。

  因式分解

  因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

  因式分解要素:

 、俳Y(jié)果必須是整式

  ②結(jié)果必須是積的形式

 、劢Y(jié)果是等式

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  公因式確定方法:

  ①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。

  ②相同字母取最低次冪

 、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

  提取公因式步驟:

 、俅_定公因式。

 、诖_定商式

  ③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

 、垭p重括號(hào)化成單括號(hào)

 、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

  ⑤相同因式寫成冪的形式

 、奘醉(xiàng)負(fù)號(hào)放括號(hào)外

 、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。

【中國(guó)傳統(tǒng)文化作文150字】相關(guān)文章:

中國(guó)的傳統(tǒng)文化的作文12-20

中國(guó)的傳統(tǒng)文化作文12-14

中國(guó)傳統(tǒng)文化的作文12-06

中國(guó)傳統(tǒng)文化的作文11-04

【合集】中國(guó)的傳統(tǒng)文化的作文12-23

實(shí)用的中國(guó)的傳統(tǒng)文化的作文01-15

(合集)中國(guó)的傳統(tǒng)文化的作文12-23

中國(guó)的傳統(tǒng)文化高中作文02-16

(必備)中國(guó)的傳統(tǒng)文化的作文09-21

中國(guó)的傳統(tǒng)文化作文(精選)09-26