- 相關(guān)推薦
(經(jīng)典)中國(guó)傳統(tǒng)文化作文150字15篇
在生活、工作和學(xué)習(xí)中,許多人都有過(guò)寫(xiě)作文的經(jīng)歷,對(duì)作文都不陌生吧,作文是人們以書(shū)面形式表情達(dá)意的言語(yǔ)活動(dòng)。如何寫(xiě)一篇有思想、有文采的作文呢?以下是小編為大家收集的中國(guó)傳統(tǒng)文化作文150字,僅供參考,大家一起來(lái)看看吧。

中國(guó)傳統(tǒng)文化作文150字1
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)。恍∮诎雸A的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
l、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的'三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
六、圓的判定性質(zhì)
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角
12.①直線L和⊙O相交 d
、谥本L和⊙O相切 d=r
③直線L和⊙O相離 dr
13.切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
③.兩圓相交 R-rr)
、.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)
中國(guó)傳統(tǒng)文化作文150字2
一、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a0時(shí),開(kāi)口方向向上,a0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
二、二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
三、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
四、拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。|a|越大,則拋物線的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
五、二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
每日新課堂|初中數(shù)學(xué)一次、二次函數(shù)知識(shí)點(diǎn)總結(jié)
當(dāng)h0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的'大體位置就很清楚了,這給畫(huà)圖象提供了方便。
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a0時(shí),開(kāi)口向上,當(dāng)a0時(shí)開(kāi)口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a)。
3.拋物線y=ax^2+bx+c(a≠0),若a0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大。若a0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小。
4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)=b^2-4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|
當(dāng)=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y0;當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0。
5.拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a。
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0)。
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0)。
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)。
中國(guó)傳統(tǒng)文化作文150字3
三角形的知識(shí)點(diǎn)
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類(lèi)
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1直角三角形的兩個(gè)銳角互余
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線;
(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對(duì)邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對(duì)邊相等且平行
(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)
(3)平行四邊形的對(duì)角線互相平分
3、判定:
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形
(4)兩組對(duì)角分別相等的四邊形是平行四邊形
(5)對(duì)角線互相平分的四邊形是平行四邊形
4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等
3、判定:
(1)有一個(gè)角是直角的平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對(duì)角線相等的平行四邊形是矩形
4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
(3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形
(4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半
2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對(duì)角線互相垂直的平行四邊形是菱形
4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
(3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形
(4)正方形的對(duì)角線與邊的夾角是45°
(5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對(duì)稱性:正方形是軸對(duì)稱圖形也是中心對(duì)稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等
3、等腰梯形的.判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形
4、對(duì)稱性:等腰梯形是軸對(duì)稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類(lèi):分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形
(2)n邊形共有n(n-3)/2條對(duì)角線
圓知識(shí)點(diǎn)、概念總結(jié)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
27、正三角形面積√3a/4a表示邊長(zhǎng)
28、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長(zhǎng)計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
中國(guó)傳統(tǒng)文化作文150字4
初中數(shù)學(xué)的學(xué)科地位很高,一直以來(lái)是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。
圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的`弦相等,所對(duì)的弦心距也相等。
推理過(guò)程
根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時(shí),顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點(diǎn)a與a'重合,b與b'重合。
因此,弧ab與弧a'b'重合,ab與a'b'重合。即
弧ab=弧a'b',ab=a'b'。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。
所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對(duì)應(yīng)的其余各組量也相等。
圓的圓心角知識(shí)要領(lǐng)很容易掌握,經(jīng)常會(huì)出現(xiàn)在關(guān)于圓的證明題中。
中國(guó)傳統(tǒng)文化作文150字5
1、初中數(shù)學(xué)知識(shí)點(diǎn)口訣
人說(shuō)幾何很困難,難點(diǎn)就在輔助線。
輔助線,如何添?把握定理和概念。
還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。
圖中有角平分線,可向兩邊作垂線。
角平分線平行線,等腰三角形來(lái)添。
線段垂直平分線,常向兩端把線連。
要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。
三角形中兩中點(diǎn),連接則成中位線。
三角形中有中線,延長(zhǎng)中線加一倍。
梯形里面作高線,平移一腰試試看。
等積式子比例換,尋找相似很關(guān)鍵。
直接證明有困難,等量代換少麻煩。
斜邊上面作高線,弦高公式是關(guān)鍵。
半徑與弦長(zhǎng)計(jì)算,弦心距來(lái)中間站。
圓上若有一切線,切點(diǎn)圓心半徑連。
要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。
弧有中點(diǎn)圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點(diǎn)連。
要想作個(gè)外接圓,各邊作出中垂線。
還要作個(gè)內(nèi)切圓,內(nèi)角平分線夢(mèng)園。
如果遇到相交圓,不要忘作公共弦。
若是添上連心線,切點(diǎn)肯定在上面。
輔助線,是虛線,畫(huà)圖注意勿改變。
假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。
基本作圖很關(guān)鍵,平時(shí)掌握要熟練。
解題還要多心眼,經(jīng)?偨Y(jié)方法顯。
切勿盲目亂添線,方法靈活應(yīng)多變。
分析綜合方法選,困難再多也會(huì)減。
虛心勤學(xué)加苦練,成績(jī)上升成直線。
2、初中數(shù)學(xué)知識(shí)點(diǎn)口訣
學(xué)習(xí)幾何體會(huì)深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見(jiàn)靠實(shí)踐。
圖中已知有中線,倍長(zhǎng)中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點(diǎn),便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見(jiàn)。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫(huà)虛線,便與原圖聯(lián)系看。
3、有理數(shù)的加法運(yùn)算
同號(hào)兩數(shù)來(lái)相加,絕對(duì)值加不變號(hào)。
異號(hào)相加大減小,大數(shù)決定和符號(hào)。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對(duì)值的大小。
4、有理數(shù)的減法運(yùn)算
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的`乘法運(yùn)算符號(hào)法則
同號(hào)得正異號(hào)負(fù),一項(xiàng)為零積是零。
5、合并同類(lèi)項(xiàng)
說(shuō)起合并同類(lèi)項(xiàng),法則千萬(wàn)不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
6、去、添括號(hào)法則
去括號(hào)或添括號(hào),關(guān)鍵要看連接號(hào)。
擴(kuò)號(hào)前面是正號(hào),去添括號(hào)不變號(hào)。
括號(hào)前面是負(fù)號(hào),去添括號(hào)都變號(hào)。
7、解方程
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
8、平方差公式
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項(xiàng),完全平方不是它。
9、完全平方公式
二數(shù)和或差平方,展開(kāi)式它共三項(xiàng)。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
10、完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
11、解一元一次方程
先去分母再括號(hào),移項(xiàng)變號(hào)要記牢。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”還沒(méi)好。
求得未知須檢驗(yàn),回代值等才上算。
12、解一元一次方程
先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化1還沒(méi)好,準(zhǔn)確無(wú)誤不白忙。
13、因式分解與乘法
和差化積是乘法,乘法本身是運(yùn)算。
積化和差是分解,因式分解非運(yùn)算。
14、因式分解
兩式平方符號(hào)異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號(hào)同,底積2倍坐中央。
因式分解能與否,符號(hào)上面有文章。
同和異差先平方,還要加上正負(fù)號(hào)。
同正則正負(fù)就負(fù),異則需添冪符號(hào)。
15、因式分解
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項(xiàng)添項(xiàng)去重組。
重組無(wú)望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)
16、因式分解
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項(xiàng)添項(xiàng)去重組。
對(duì)癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
17、二次三項(xiàng)式的因式分解
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
18、比和比例
兩數(shù)相除也叫比,兩比相等叫比例。
外項(xiàng)積等內(nèi)項(xiàng)積,等積可化八比例。
分別交換內(nèi)外項(xiàng),統(tǒng)統(tǒng)都要叫更比。
同時(shí)交換內(nèi)外項(xiàng),便要稱其為反比。
前后項(xiàng)和比后項(xiàng),比值不變叫合比。
前后項(xiàng)差比后項(xiàng),組成比例是分比。
兩項(xiàng)和比兩項(xiàng)差,比值相等合分比。
前項(xiàng)和比后項(xiàng)和,比值不變叫等比。
19、解比例
外項(xiàng)積等內(nèi)項(xiàng)積,列出方程并解之。
20、求比值
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會(huì)變通。
21、正比例與反比例
商定變量成正比,積定變量成反比。
22、正比例與反比例
變化過(guò)程商一定,兩個(gè)變量成正比。
變化過(guò)程積一定,兩個(gè)變量成反比。
23、判斷四數(shù)成比例
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
24、判斷四式成比例
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
25、比例中項(xiàng)
成比例的四項(xiàng)中,外項(xiàng)相同會(huì)遇到。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)少不了。
比例中項(xiàng)很重要,多種場(chǎng)合會(huì)碰到。
成比例的四項(xiàng)中,外項(xiàng)相同有不少。
有時(shí)內(nèi)項(xiàng)會(huì)相同,比例中項(xiàng)出現(xiàn)了。
同數(shù)平方等異積,比例中項(xiàng)無(wú)處逃。
26、根式與無(wú)理式
表示方根代數(shù)式,都可稱其為根式。
根式異于無(wú)理式,被開(kāi)方式無(wú)限制。
被開(kāi)方式有字母,才能稱為無(wú)理式。
無(wú)理式都是根式,區(qū)分它們有標(biāo)志。
被開(kāi)方式有字母,又可稱為無(wú)理式。
27、求定義域
求定義域有講究,四項(xiàng)原則須留意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,滿足多個(gè)不等式。
求定義域要過(guò)關(guān),四項(xiàng)原則須注意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,不等式組求解集。
28、解一元一次不等式
先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”注意了。
同乘除正無(wú)防礙,同乘除負(fù)也變號(hào)。
29、解一元一次不等式組
大于頭來(lái)小于尾,大小不一中間找。
大大小小沒(méi)有解,四種情況全來(lái)了。
同向取兩邊,異向取中間。
中間無(wú)元素,無(wú)解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對(duì)取較。
敬老院以老為榮,(同大就要取較大)
軍營(yíng)里沒(méi)老沒(méi)少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
30、解一元二次不等式
首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點(diǎn)。
A正開(kāi)口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。
方程若無(wú)實(shí)數(shù)根,口上大零解為全。
小于零將沒(méi)有解,開(kāi)口向下正相反。
31、用平方差公式因式分解
異號(hào)兩個(gè)平方項(xiàng),因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
32、用完全平方公式因式分解
兩平方項(xiàng)在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
33、用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。
確定參數(shù)abc,計(jì)算方程判別式。
判別式值與零比,有無(wú)實(shí)根便得知。
有實(shí)根可套公式,沒(méi)有實(shí)根要告之。
34、用常規(guī)配方法解一元二次方程
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒(méi)問(wèn)題。
左邊分解右合并,直接開(kāi)方去解題。
該種解法叫配方,解方程時(shí)多練習(xí)。
35、用間接配方法解一元二次方程
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢(shì)。
【注】恒等式
36、解一元二次方程
方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想。
如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量。
。狻ⅲ阆嗟榷紴榱,等根是零不要忘。
。狻ⅲ阃瑫r(shí)不為零,因式分解或配方,也可直接套公式,因題而異擇良方。
37、正比例函數(shù)的鑒別
判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
正比例函數(shù)是否,辨別需分兩步走。
一量表示另一量,有沒(méi)有。
若有再去看取值,全體實(shí)數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。
38、正比例函數(shù)的圖象與性質(zhì)
正比函數(shù)圖直線,經(jīng)過(guò)和原點(diǎn)。
K正一三負(fù)二四,變化趨勢(shì)記心間。
K正左低右邊高,同大同小向爬山。
K負(fù)左高右邊低,一大另小下山巒。
39、一次函數(shù)
一次函數(shù)圖直線,經(jīng)過(guò)點(diǎn)。
K正左低右邊高,越走越高向爬山。
K負(fù)左高右邊低,越來(lái)越低很明顯。
K稱斜率b截距,截距為零變正函。
40、反比例函數(shù)
反比函數(shù)雙曲線,經(jīng)過(guò)點(diǎn)。
K正一三負(fù)二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負(fù)左低右邊高,二四象限如爬山。
41、二次函數(shù)
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實(shí)數(shù)定義域,圖像叫做拋物線。
拋物線有對(duì)稱軸,兩邊單調(diào)正相反。
A定開(kāi)口及大小,線軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很顯眼。
如果要畫(huà)拋物線,平移也可去描點(diǎn),提取配方定頂點(diǎn),兩條途徑再挑選。
列表描點(diǎn)后連線,平移規(guī)律記心間。
左加右減括號(hào)內(nèi),號(hào)外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實(shí)數(shù)。
A定開(kāi)口及大小,開(kāi)口向上是正數(shù)。
絕對(duì)值大開(kāi)口小,開(kāi)口向下A負(fù)數(shù)。
拋物線有對(duì)稱軸,增減特性可看圖。
線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。
如果要畫(huà)拋物線,描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。
列表描點(diǎn)后連線,三點(diǎn)大致定全圖。
若要平移也不難,先畫(huà)基礎(chǔ)拋物線,頂點(diǎn)移到新位置,開(kāi)口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線
42、直線、射線與線段
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長(zhǎng)短不確定,可向兩方無(wú)限延。
射線僅有一端點(diǎn),反向延長(zhǎng)成直線。
線段定長(zhǎng)兩端點(diǎn),雙向延伸變直線。
兩點(diǎn)定線是共性,組成圖形最常見(jiàn)。
43、角
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補(bǔ)角。
一點(diǎn)出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補(bǔ)角和平角。
44、證等積或比例線段
等積或比例線段,多種途徑可以證。
證等積要改等比,對(duì)照?qǐng)D形看特征。
共點(diǎn)共線線相交,平行截比把題證。
三點(diǎn)定型十分像,想法來(lái)把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來(lái)命題即得證。
實(shí)在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無(wú)不勝。
45、解無(wú)理方程
一無(wú)一有各一邊,兩無(wú)也要放兩邊。
乘方根號(hào)無(wú)蹤跡,方程可解無(wú)負(fù)擔(dān)。
兩無(wú)一有相對(duì)難,兩次乘方也好辦。
特殊情況去換元,得解驗(yàn)根是必然。
46、解分式方程
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗(yàn)根,原留增舍別含糊。
47、列方程解應(yīng)用題
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫(huà)圖造方程,解方程時(shí)守章法。
檢驗(yàn)準(zhǔn)且合題意,問(wèn)求同一才作答。
48、兩點(diǎn)間距離公式
同軸兩點(diǎn)求距離,大減小數(shù)就為之。
與軸等距兩個(gè)點(diǎn),間距求法亦如此。
平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值。
差方相加開(kāi)平方,距離公式要牢記。
49、矩形的判定
任意一個(gè)四邊形,三個(gè)直角成矩形;
對(duì)角線等互平分,四邊形它是矩形。
已知平行四邊形,一個(gè)直角叫矩形;
兩對(duì)角線若相等,理所當(dāng)然為矩形。
50、菱形的判定
任意一個(gè)四邊形,四邊相等成菱形;
四邊形的對(duì)角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;
兩對(duì)角線若垂直,順理成章為菱形。
中國(guó)傳統(tǒng)文化作文150字6
課題
3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)
教學(xué)目標(biāo)
1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式
教學(xué)重點(diǎn)
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)難點(diǎn)
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)方法
講練結(jié)合法
教學(xué)過(guò)程
。↖)知識(shí)要點(diǎn)(見(jiàn)下表:)
第三章第29頁(yè)函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過(guò)點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過(guò)點(diǎn)(0,b)的`直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無(wú)無(wú)無(wú)b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax
第三章第30頁(yè)b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱軸x,頂點(diǎn)(,)
2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過(guò)點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過(guò)點(diǎn)Q(3,3)
。3)拋物線對(duì)稱軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過(guò)點(diǎn)(1,7)。2,
解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得
a2,故y2(x1)252x24x3
(3)∵拋物線對(duì)稱軸為x2;
∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1
∴所求二次函數(shù)為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數(shù)的圖像過(guò)點(diǎn)(0,8),(1,(4,0)
。1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值
113x1(x)2,知函數(shù)的圖像開(kāi)口向上,對(duì)稱軸為x
224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11
中國(guó)傳統(tǒng)文化作文150字7
一、初中數(shù)學(xué)基本概念
1.方程:含有未知數(shù)的等式叫做方程。
2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
3.方程的解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
4.解方程:求方程的解的過(guò)程叫做解方程。
5.恒等式:兩個(gè)含有相同的未知數(shù),并且含未知數(shù)項(xiàng)的系數(shù)都是零的整式方程是一元一次方程。
二、初中數(shù)學(xué)基本公式
1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。
2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。
3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。
4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。
5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。
6.正方形面積公式:正方形面積=邊長(zhǎng)×邊長(zhǎng),用字母表示為“S=a2”。
7.一元一次方程求解公式:ax=b,其中a和b為方程的系數(shù),x為未知數(shù)。當(dāng)a≠0時(shí),有唯一解;當(dāng)a=0且b≠0時(shí),無(wú)解;當(dāng)a=0且b=0時(shí),有無(wú)數(shù)解。
三、初中數(shù)學(xué)基本定理
1.等式的性質(zhì):等式兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式;等式兩邊同時(shí)乘以(或除以)同一個(gè)不為0的數(shù)或代數(shù)式,所得結(jié)果仍是等式。
2.方程的解法:通過(guò)移項(xiàng)、合并同類(lèi)項(xiàng)、去括號(hào)、去分母等方式,將一元一次方程轉(zhuǎn)化為ax=b的.形式,求解得到方程的解。
3.一元一次不等式的解法:將一元一次不等式轉(zhuǎn)化為ax>b或ax
4.二元一次方程組的解法:通過(guò)代入消元法或加減消元法,將二元一次方程組轉(zhuǎn)化為一個(gè)一元一次方程,然后求解得到方程組的解。
5.菱形的性質(zhì):菱形的四條邊相等,對(duì)角線互相垂直平分,并且每一組對(duì)角線平分一組對(duì)角。
6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個(gè)角都是直角。
7.相似三角形的判定定理:兩個(gè)三角形對(duì)應(yīng)邊成比例且對(duì)應(yīng)角相等,則這兩個(gè)三角形相似。
8.全等三角形的判定定理:兩個(gè)三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個(gè)三角形全等。
9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對(duì)的兩條弧,平分弦所對(duì)的圓周弧的弦垂直平分弦。
10.圓的切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線;經(jīng)過(guò)圓的半徑外端且垂直于切線的直線是圓的切線;圓的割線定理:一條直線與一個(gè)圓有兩個(gè)不同的交點(diǎn),則這條直線被圓截得的線段長(zhǎng)的平方等于這個(gè)圓上兩點(diǎn)所對(duì)應(yīng)的弦長(zhǎng)的平方差。
11.相交弦定理:圓內(nèi)的兩條相交弦被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。
12.切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。
13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等;相等的弧所對(duì)的弦也相等;相等的弦所對(duì)的弧也相等;在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等;弧的度數(shù)等于它所對(duì)的圓心角度數(shù);一個(gè)圓心角等于它所對(duì)的弧的度數(shù);半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周
中國(guó)傳統(tǒng)文化作文150字8
代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))
幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實(shí)數(shù)的分類(lèi)
有理數(shù):整數(shù)(包括:正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)(包括:有限小數(shù)和無(wú)限環(huán)循小數(shù))都是有理數(shù)。如:—3,0.231,0.737373......
無(wú)理數(shù):無(wú)限不環(huán)循小數(shù)叫做無(wú)理數(shù)如:π,—,0.1010010001......(兩個(gè)1之間依次多1個(gè)0)。
實(shí)數(shù):有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù)。
2、無(wú)理數(shù)
在理解無(wú)理數(shù)時(shí),要抓住"無(wú)限不循環(huán)"這一時(shí)之,它包含兩層意思:一是無(wú)限小數(shù);二是不循環(huán)。二者缺一不可。歸納起來(lái)有四類(lèi):
(1)開(kāi)方開(kāi)不盡的數(shù),如等;
。2)有特定意義的數(shù),如圓周率π,或化簡(jiǎn)后含有π的數(shù),如+8等;
。3)有特定結(jié)構(gòu)的數(shù),如0.1010010001......等;
(4)某些三角函數(shù),如sin60o等。
注意:判斷一個(gè)實(shí)數(shù)的屬性(如有理數(shù)、無(wú)理數(shù)),應(yīng)遵循:一化簡(jiǎn),二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標(biāo)準(zhǔn)。
3、非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x≥0)
常見(jiàn)的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
4、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線叫做數(shù)軸(畫(huà)數(shù)軸時(shí),要注意上述規(guī)定的三要素缺一不可)。
解題時(shí)要真正掌握數(shù)形結(jié)合的思想,理解實(shí)數(shù)與數(shù)軸的點(diǎn)是一一對(duì)應(yīng)的,并能靈活運(yùn)用。
、佼(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的.方向?yàn)檎较,就得到?shù)軸("三要素")。
、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。
③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。
作用:A、直觀地比較實(shí)數(shù)的大小;B、明確體現(xiàn)絕對(duì)值意義;C、建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
5、相反數(shù)
實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。
即:(1)實(shí)數(shù)的相反數(shù)是。
中國(guó)傳統(tǒng)文化作文150字9
初中數(shù)學(xué)總復(fù)習(xí),是對(duì)初中三年來(lái)所學(xué)數(shù)學(xué)知識(shí)的回顧,鞏固提高,查漏補(bǔ)缺,它不是對(duì)知識(shí)的簡(jiǎn)單重復(fù),而是引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行系統(tǒng)歸納和升華,并用已學(xué)的知識(shí)解決新問(wèn)題。進(jìn)一步加深對(duì)數(shù)學(xué)概念的理解,弄清各部分知識(shí)的內(nèi)在聯(lián)系,熟練掌握重要的數(shù)學(xué)方法和數(shù)學(xué)思想,從而達(dá)到開(kāi)發(fā)智力、培養(yǎng)能力的目的因此,初中數(shù)學(xué)總復(fù)習(xí)是非常重要的,復(fù)習(xí)的好壞將決定學(xué)生成績(jī)的好壞、決定學(xué)生掌握知識(shí)的牢固程度。一直以來(lái),如何有效提高復(fù)習(xí)效率,是廣大教師多年來(lái)探求的重要課題之一。筆者從1999年以來(lái),一直擔(dān)任初中數(shù)學(xué)的教學(xué)任務(wù),所教班級(jí)的數(shù)學(xué)中考考試成績(jī)一直名列前茅。下面筆者根據(jù)對(duì)初中數(shù)學(xué)總復(fù)習(xí)的實(shí)踐,總結(jié)出的一套較為實(shí)用的復(fù)習(xí)方法。
一、復(fù)習(xí)基礎(chǔ)知識(shí)階段
在初中數(shù)學(xué)復(fù)習(xí)中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個(gè)關(guān)于初中數(shù)學(xué)知識(shí)的前后相連、縱橫交錯(cuò)、融會(huì)貫通的知識(shí)結(jié)構(gòu)。在第一階段中,一般按初中數(shù)學(xué)知識(shí)體系把初中數(shù)學(xué)知識(shí)分成九個(gè)單元,即:“數(shù)與式”“方程和不等式(組)”“函數(shù)及其圖像”“統(tǒng)計(jì)與概率”“圖形初步認(rèn)識(shí)和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復(fù)習(xí)。每個(gè)單元按下面步驟進(jìn)行。
1、疏理知識(shí)結(jié)構(gòu)
首先,引導(dǎo)學(xué)生把本單元的知識(shí)用文字、圖表等方式編織知識(shí)網(wǎng)絡(luò),用簡(jiǎn)表式的結(jié)構(gòu)表示本單元的知識(shí)結(jié)構(gòu);其次,引導(dǎo)學(xué)生回顧基礎(chǔ)知識(shí);最后,以基本習(xí)題的形式再現(xiàn)知識(shí)的內(nèi)容,即通過(guò)一些判斷題、填空題、選擇題、簡(jiǎn)單計(jì)算題的訓(xùn)練達(dá)到鞏固基礎(chǔ)知識(shí)的目的
2、訓(xùn)練基本技能和解題技巧
在理順知識(shí)結(jié)構(gòu)的基礎(chǔ)上,把每個(gè)單元按知識(shí)點(diǎn)分成若干課時(shí),然后按知識(shí)點(diǎn)精選例題和練習(xí)題,引導(dǎo)學(xué)生進(jìn)行多方練習(xí),多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎(chǔ)知識(shí)和解題技巧。
精選的例題和練習(xí)題最好從課本上尋找,因?yàn)橹锌嫉拿}原則是:“源于教材,高于教材!彼x例題、練習(xí)題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓(xùn)練。
每課時(shí)的教學(xué)可按“理順知識(shí)――嘗試做例題――講解例題――練習(xí)――變式練習(xí)――作業(yè)”幾個(gè)步驟進(jìn)行。在“理解知識(shí)”階段力求簡(jiǎn)單明了地揭示本節(jié)課所要復(fù)習(xí)的知識(shí)點(diǎn),領(lǐng)會(huì)概念、定理、公理和數(shù)學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時(shí)切不可就題論題,應(yīng)注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。
3、單元測(cè)試
在上述復(fù)習(xí)的基礎(chǔ)上,復(fù)習(xí)完每一個(gè)單元后,必須出示至少4份試卷。第一份試卷,以引導(dǎo)學(xué)生系統(tǒng)地梳理教材、構(gòu)建知識(shí)結(jié)構(gòu),歸納和總結(jié)各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結(jié)本單元的常用結(jié)論、解題方法、一題多解、一題多變?yōu)橹。?duì)學(xué)生進(jìn)行測(cè)試,以了解學(xué)生掌握知識(shí)的情況,及時(shí)查漏補(bǔ)缺。
測(cè)試題應(yīng)以教學(xué)大綱、考標(biāo)、教材為依據(jù),要求內(nèi)容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過(guò)測(cè)試,全面衡量復(fù)習(xí)效果,一般來(lái)說(shuō),測(cè)試題可從以下幾個(gè)方面精選題目:(1)全面體現(xiàn)本單元的基礎(chǔ)知識(shí)的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運(yùn)用本單元知識(shí)的綜合題。
上面三方面試題的比例為6∶3∶1測(cè)試完后,教師進(jìn)行講評(píng),對(duì)學(xué)生未弄懂的知識(shí)點(diǎn)及時(shí)進(jìn)行補(bǔ)救。
二、綜合訓(xùn)練,加強(qiáng)重點(diǎn)知識(shí)階段
在完成第一階段的基礎(chǔ)上,根據(jù)初中數(shù)學(xué)知識(shí)的`重點(diǎn),選擇一些較為典型的綜合題,引導(dǎo)學(xué)生合作探索和研究,以培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)來(lái)分析問(wèn)題和解決問(wèn)題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。
綜合題,一般來(lái)說(shuō)有代數(shù)綜合題、幾何綜合題、代數(shù)和幾何相結(jié)合的綜合題。代數(shù)綜合題的重點(diǎn)應(yīng)是二次方程和二次函數(shù);幾何綜合題的重點(diǎn)是三角形、四邊形和圖;代數(shù)與幾何相結(jié)合的綜合題則是方程、函數(shù)與圖像相結(jié)合的題。
對(duì)于綜合題的訓(xùn)練,一般采用“嘗試練習(xí)――分析――講解――歸納解題方法與技巧――練習(xí)”的方式進(jìn)行。對(duì)重點(diǎn)問(wèn)題進(jìn)行一題多解、一題多變的訓(xùn)練。
三、綜合測(cè)試,查漏補(bǔ)缺階段
為了進(jìn)一步鞏固數(shù)學(xué)知識(shí),全面考查復(fù)習(xí)效果,提高學(xué)生的心理素質(zhì),在第二階段復(fù)習(xí)結(jié)束時(shí),可進(jìn)行模擬測(cè)試。測(cè)試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現(xiàn)初中數(shù)學(xué)知識(shí)和方法,既要有考查雙基的基礎(chǔ)題,又要有考查學(xué)生能力的綜合題。有的知識(shí)還要與高中知識(shí)銜接并拓展。
考完一套,及時(shí)講評(píng),與學(xué)生一起分析,共同探討,列出知識(shí)清單使得每個(gè)學(xué)生經(jīng)歷知識(shí)收集、整理的過(guò)程,把書(shū)學(xué)“薄”,有效地回顧了一章書(shū)所學(xué)的知識(shí)。
中國(guó)傳統(tǒng)文化作文150字10
常用數(shù)學(xué)公式
乘法與因式分a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h
正棱錐側(cè)面積S=1/2c*h"正棱臺(tái)側(cè)面積S=1/2(c+c")h"圓臺(tái)側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長(zhǎng)柱體體積公式V=s*h圓柱體V=pi*r2h
1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等
5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯(cuò)角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯(cuò)角相等14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對(duì)角線互相平分的`四邊形是平行四邊形
59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對(duì)角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)
94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比
97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r
122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角127圓的外切四邊形的兩組對(duì)邊的和相等
128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)
④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)142正三角形面積√3a/4a表示邊長(zhǎng)
143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(zhǎng)計(jì)算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2
中國(guó)傳統(tǒng)文化作文150字11
關(guān)鍵詞:數(shù)學(xué);總復(fù)習(xí);初中;方法
中圖分類(lèi)號(hào):G633。6文獻(xiàn)標(biāo)識(shí)碼:B文章編號(hào):1672—1578(20xx)12—0217—01
初中數(shù)學(xué)是義務(wù)教育階段一門(mén)主要課程,它是進(jìn)一步學(xué)習(xí)工作的基礎(chǔ)。因此,進(jìn)行初三數(shù)學(xué)總復(fù)習(xí),使學(xué)生具有一定的數(shù)學(xué)素質(zhì),合格畢業(yè),對(duì)于提高全民族素質(zhì),為培養(yǎng)改革人才奠定基礎(chǔ)是十分必要的。本文將要探討的就是搞好初三數(shù)學(xué)總復(fù)習(xí)的一些體會(huì)。
1、明確總復(fù)習(xí)的目的
中考是總結(jié)性的檢驗(yàn),考試成績(jī)也必然會(huì)促使我們認(rèn)真地總結(jié)檢查自己的教學(xué)工作,改進(jìn)教學(xué)方法,提高教學(xué)質(zhì)量。因此,中考的需要是初三總復(fù)習(xí)的重要目的,但不是唯一的目的。在復(fù)習(xí)方面要從單純面向升學(xué)的需要,轉(zhuǎn)變?yōu)槊嫦驅(qū)W生終身學(xué)習(xí)的需要。通過(guò)初三數(shù)學(xué)總復(fù)習(xí),要使學(xué)生全面而系統(tǒng)地掌握初中數(shù)學(xué)的基礎(chǔ)知識(shí)加深理解這些知識(shí),進(jìn)一步提高運(yùn)用這些動(dòng)知識(shí)的分析和解決問(wèn)題的能力,從而大面積地扎扎實(shí)實(shí)的提高教學(xué)質(zhì)量,為學(xué)生升入高一級(jí)學(xué)校打下必要的基礎(chǔ)。
2、在《課標(biāo)》和《考試說(shuō)明》的指導(dǎo)下開(kāi)展復(fù)習(xí)工作
"人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展"。這是新課程標(biāo)準(zhǔn)努力倡導(dǎo)的目標(biāo)。也是我們總復(fù)習(xí)工作的出發(fā)點(diǎn)。20xx年版的《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》(以下簡(jiǎn)稱《課程標(biāo)準(zhǔn)》)以及歷年的《河北省文化課考試說(shuō)明》(以下簡(jiǎn)稱《考試說(shuō)明》)中所確定的必學(xué)內(nèi)容是要求所有學(xué)生都應(yīng)當(dāng)學(xué)習(xí)的,一定要教好學(xué)好,降低難度、減輕學(xué)生過(guò)重的學(xué)習(xí)負(fù)擔(dān),正是為了使學(xué)生掌握那些最基本、最重要的.內(nèi)容,使絕大多數(shù)同學(xué)能學(xué)得好,增強(qiáng)信心,大面積提高教學(xué)質(zhì)量。另一方面,對(duì)學(xué)有余力的同學(xué)也要?jiǎng)?chuàng)造條件,指導(dǎo)他們進(jìn)一步學(xué)習(xí),充分發(fā)揮他們的數(shù)學(xué)才能,做到既面向全體學(xué)生又因材施教。這一重要的教學(xué)指導(dǎo)思想,也是我們初三數(shù)學(xué)總復(fù)習(xí)必須遵循的方針。
3、從學(xué)生的實(shí)際出發(fā),有序地進(jìn)行初三數(shù)學(xué)總復(fù)習(xí)
教學(xué)是師生雙方的共同活動(dòng),教師的教是為學(xué)生積極主動(dòng)地學(xué)。初三總復(fù)習(xí)時(shí)間短,內(nèi)容多,要想取得較好的復(fù)習(xí)效果,除教師鉆研《課標(biāo)》與《考試說(shuō)明》,通曉教材,突出重點(diǎn)之外,還要調(diào)查研究、了解學(xué)生、明確難點(diǎn),從學(xué)生實(shí)際出發(fā),進(jìn)行復(fù)習(xí)。否則,課的起點(diǎn)高了,學(xué)生接受有困難,起點(diǎn)低了,講得太容易了,學(xué)生聽(tīng)起來(lái)乏味厭煩,使復(fù)習(xí)課不能有的放矢,對(duì)癥下藥、因材施教。因此,要了解學(xué)生的思想狀況,復(fù)習(xí)的學(xué)習(xí)態(tài)度和方法;要了解學(xué)生對(duì)哪些知識(shí)是掌握提比較好的,哪些知識(shí)理解得不夠深透,還有哪些知識(shí)是應(yīng)當(dāng)補(bǔ)缺的,哪些知識(shí)是普遍性的問(wèn)題,哪些知識(shí)是個(gè)別性問(wèn)題,充分估計(jì)學(xué)生的實(shí)際水平究竟如何。
4、突出數(shù)學(xué)思想方法,狠抓"四基"的落實(shí)
數(shù)學(xué)思想方法是數(shù)學(xué)知識(shí)的精髓,是溝通數(shù)學(xué)知識(shí)與運(yùn)算能力的橋梁。教師應(yīng)在平時(shí)教學(xué)中不斷引導(dǎo)學(xué)生從數(shù)學(xué)知識(shí)中提煉數(shù)學(xué)思想,注重運(yùn)用數(shù)學(xué)思想去分析問(wèn)題與解決問(wèn)題,并有意識(shí)、有目的地結(jié)合教材逐步滲透給學(xué)生:轉(zhuǎn)化的思想、數(shù)形結(jié)合的思想、分類(lèi)討論的思想、方程的思想、函數(shù)的思想,要求學(xué)生理解待定系數(shù)法、消元法、降次法、配方法、換元法。對(duì)學(xué)習(xí)成績(jī)好的學(xué)生,還應(yīng)激發(fā)他們?nèi)タ偨Y(jié)帶全局性的數(shù)學(xué)思想方法。
20xx年版初中數(shù)學(xué)課程標(biāo)準(zhǔn)明確提出"四基",即基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn)。要使學(xué)生復(fù)習(xí)好基礎(chǔ)知識(shí)和掌握基本技能,首先要使學(xué)生正確理解概念,對(duì)易混的概念抓住它們之間的區(qū)別與聯(lián)系,同時(shí)要抓基本運(yùn)算、抓基本數(shù)學(xué)方法和思維方法;靖拍睢⒒具\(yùn)算必須反復(fù)地練習(xí),才能達(dá)到純熟和鞏固。凡屬這方面的錯(cuò)誤,必復(fù)習(xí)一段、練習(xí)一段、檢查一段。務(wù)求落實(shí)"段段清",以掌握知識(shí)的本質(zhì)為標(biāo)準(zhǔn)。當(dāng)然還要注意因材施教,逐步深入。
中國(guó)傳統(tǒng)文化作文150字12
1、正數(shù)和負(fù)數(shù)的有關(guān)概念
(1)正數(shù):
比0大的數(shù)叫做正數(shù);
負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
2、有理數(shù)的概念及分類(lèi)
3、有關(guān)數(shù)軸
(1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。
(2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。
4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
5、利用絕對(duì)值比較大小
兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;
兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。
6、有理數(shù)加法
(1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和。
(2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零。
(3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
7、有理數(shù)減法:
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡(jiǎn)的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫(xiě)。
例如:14+12+(-25)+(-17)可以寫(xiě)成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和!
9、有理數(shù)的乘法
兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號(hào)第二步:絕對(duì)值相乘
10、乘積的符號(hào)的確定
幾個(gè)有理數(shù)相乘,因數(shù)都不為0時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。
11、倒數(shù):
乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒(méi)有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的'兩個(gè)數(shù)符號(hào)一定相同)
倒數(shù)是本身的只有1和-1。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
、僭谕黄矫
、趦蓷l數(shù)軸
、刍ハ啻怪
、茉c(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向。
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成。
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成。
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
中國(guó)傳統(tǒng)文化作文150字13
一.圓的定義
1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點(diǎn)為圓心。
2.定義2中繞的那一端的端點(diǎn)為圓心。
3.圓任意兩條對(duì)稱軸的交點(diǎn)為圓心。
4.垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
5.直徑:通過(guò)圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無(wú)數(shù)條。圓是軸對(duì)稱圖形,每條直徑所在的直線是圓的對(duì)稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
三.圓的基本性質(zhì)
1.圓的對(duì)稱性
(1)圓是軸對(duì)稱圖形,它的對(duì)稱軸是直徑所在的直線。
(2)圓是中心對(duì)稱圖形,它的對(duì)稱中心是圓心。
(3)圓是旋轉(zhuǎn)對(duì)稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。
平分弧的直徑,垂直平分弧所對(duì)的弦。
3.圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。
(1)同弧所對(duì)的圓周角相等。
(2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。
(2)不在同一直線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角三角形的外心就是斜邊的中點(diǎn)。)
6.直線與圓的位置關(guān)系。d表示圓心到直線的`距離,r表示圓的半徑。
直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓只有一個(gè)交點(diǎn),直線與圓相切;直線與圓沒(méi)有交點(diǎn),直線與圓相離。
四.圓和圓
1.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。
2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。
3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。
4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。
5.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關(guān)系:
(1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。
(2)這個(gè)圓是這個(gè)正多邊形的外接圓。
中國(guó)傳統(tǒng)文化作文150字14
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);
⑵菱形的四條邊都相等;
、橇庑蔚膬蓷l對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、攘庑问禽S對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。
3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。
9、中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0
10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號(hào)式子的意義:表示a的.平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類(lèi)型:①想誰(shuí)的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
中國(guó)傳統(tǒng)文化作文150字15
1有理數(shù)加法法則
1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。
2有理數(shù)加法的運(yùn)算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
3有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a—b=a+(—b)
4有理數(shù)乘法法則
1、兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的.符號(hào)由負(fù)因式的個(gè)數(shù)決定。
5有理數(shù)乘法的運(yùn)算律
1、乘法的交換律:ab=ba;
2、乘法的結(jié)合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
6單項(xiàng)式
只含有數(shù)字與字母的積的代數(shù)式叫做單項(xiàng)式。
注意:?jiǎn)雾?xiàng)式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。
7多項(xiàng)式
1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。其中每個(gè)單項(xiàng)式叫做這個(gè)多項(xiàng)式的項(xiàng)。多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。
2、同類(lèi)項(xiàng)所有字母相同,并且相同字母的指數(shù)也分別相同的項(xiàng)叫做同類(lèi)項(xiàng)。幾個(gè)常數(shù)項(xiàng)也是同類(lèi)項(xiàng)。
8中心對(duì)稱
1、定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱,這個(gè)點(diǎn)叫做對(duì)稱中心。這兩個(gè)圖形中的對(duì)應(yīng)點(diǎn)叫做關(guān)于中心的對(duì)稱點(diǎn)。
2、心對(duì)稱的兩條基本性質(zhì):
。1)關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)所連線段都經(jīng)過(guò)對(duì)稱中心,而且被對(duì)稱中心所平分。
。2)關(guān)于中心對(duì)稱的兩個(gè)圖形是全等圖形。
3、中心對(duì)稱圖形
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心。
【中國(guó)傳統(tǒng)文化作文150字】相關(guān)文章:
中國(guó)的傳統(tǒng)文化作文12-14
中國(guó)傳統(tǒng)文化的作文12-06
中國(guó)傳統(tǒng)文化的作文11-04
【合集】中國(guó)的傳統(tǒng)文化的作文12-23
實(shí)用的中國(guó)的傳統(tǒng)文化的作文01-15
(合集)中國(guó)的傳統(tǒng)文化的作文12-23